Electrostatic, meaning the attraction from one's positive nucleus is to the negative electrons of the other atom and vis versa.
Answer:
CO32−
Explanation:
We have to consider the valencies of the polyatomic ions involved. Recall that it is only a polyatomic ion with a valency of -2 that can form a compound which requires two sodium ions.
When we look closely at the options, we will realize that among all the options, only CO32− has a valency of -2, hence it must be the required answer. In order to be double sure, we put down the ionic reaction equation as follows;
2Na^+(aq) + CO3^2-(aq) ---------> Na2CO3(aq)
Answer : The percentage composition of carbon, hydrogen and sulfur in a compound is, 38.8 %, 9.6 % and 51.6 % respectively.
Explanation :
To calculate the percentage composition of element in sample, we use the equation:
Given:
Mass of carbon = 1.94 g
Mass of hydrogen = 0.48 g
Mass of sulfur = 2.58 g
First we have to calculate the mass of sample.
Mass of sample = Mass of carbon + Mass of hydrogen + Mass of sulfur
Mass of sample = 1.94 + 0.48 + 2.58 = 5.0 g
Now we have to calculate the percentage composition of a compound.
Hence, the percentage composition of carbon, hydrogen and sulfur in a compound is, 38.8 %, 9.6 % and 51.6 % respectively.
Answer:
Here's what I get
Explanation:
Assume the initial concentrations of H₂ and I₂ are 0.030 and 0.015 mol·L⁻¹, respectively.
We must calculate the initial concentration of HI.
1. We will need a chemical equation with concentrations, so let's gather all the information in one place.
H₂ + I₂ ⇌ 2HI
I/mol·L⁻¹: 0.30 0.15 x
2. Calculate the concentration of HI
3. Plot the initial points
The graph below shows the initial concentrations plotted on the vertical axis.
Answer:
Use the formula q = m·ΔHv in which q = heat energy, m = mass, and ΔHv = heat of vaporization.
Explanation:
:)