To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s
Answer:
I'm pretty sure its 3m/s^2 for the acceleration but I don't know the force part sorry .
Explanation:
15m/s - 0m/s divided by 5 s = 3m/s
I'm no expert or anything so I could be wrong but this is the best I can give you. Sorry
Answer:

Explanation:
v = Velocidad final = 
u = Velocidad inicial = 0
t = Tiempo empleado = 15 s
a = Aceleración
De las ecuaciones cinemáticas tenemos

La aceleración del camión en el primer intervalo de tiempo es
.
Answer:

Explanation:
From the question we are told that:
Force P=88Ib
Mass of crate M_c=210Ib
Generally the equation for Frictional force F is mathematically given by


with 

Therefore since Static Friction supersedes applied force body remains at rest.
Frictional force =88Ib (negative)
