Answer:
Flow velocity
50.48m/s
Pressure change at probe tip
1236.06Pa
Explanation:
Question is incomplete
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively
solution
In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe
please check attachment for complete solution and step by step explanation
Answer:
Steel and wood
Explanation:
For a material to resist stress and vibration, it must have high ductility, which is the ability to undergo large deformations and tension. Modern buildings are often constructed with structural steel, a component that comes in a variety of shapes and allows buildings to bend without breaking.
Answer:
a) The mass flow rate is 19.71 kg/s
b) The inlet area is 0.41 m²
c) The thrust power is 333.31 kW
d) The propulsive efficiency is 26.7%
Explanation:
Please look at the solution in the attached Word file.
Given data:
•) applied voltage = 15 V
•). Resistance = 1000 ohm
Required:
•). The magnitude of current= ?
•••••••••••••SOLUTION•••••••••••••
We can find the relation ship between current, voltage and resistance with the help of Ohms law.
According to ohms law;
V= IR.
Rearranging the above equation;
I= V/ R
Putt the values in the above equation; we get
I= 15V/ 1000ohm
I = 0.015 A( ampere)
••••••••••••••• CONCLUSION•••••••
The value of the current would be 0.15 ampere when Resistance is equal to 1000 and that of Voltage is equal to 15 V.