Length of the pipe = 0.39 m
Third harmonic frequency = 1400 Hz
For the third harmonic:
Wavelength = 
The center of the open pipe will host a node and the nearest anti - node from the center will be at the 0.25 × wavelength
Distance from center = 0.25 × wavelength
Distance = 
Plugging the value of the length of the pipe (L) = 0.39 m = 39 cm
Distance = 
Distance from the center to the nearest anti - node = 6.5 cm
Hence, the nearest distance to the anti - node from the center = 6.5 cm
So, option C is correct.
Answer:
The pilot is 2214.22 miles from her starting position
Explanation:
Since the pilot is traveling at a constant speed of 635 mph, the total distance traveled can be easily found as follows:

There was a 10 degrees deviation, so the angle between the trajectory of both legs is 170 degrees.
The distance we need to find is that from the start of the first leg to the end of the second leg, those three distances form a triangle and since the side we're interested in is opposite to the 170 degrees angle, we can determine its length by the law of cosines:

The pilot is 2214.22 miles from her starting position
Hey there! My name is Christy and I'm gladly to help you out!
The three main forces that stop moving objects are friction, gravity and wind resistance. Equal forces acting inopposite directions are called balanced forces. Balanced forcesacting on an object will not change the object's motion. When you add equal forces in opposite direction, the netforce is zero.
Hope this helped!
Answer:
The potential difference through which an electron accelerates to produce x rays is
.
Explanation:
It is given that,
Wavelength of the x -rays, 
The energy of the x- rays is given by :

The energy of an electron in terms of potential difference is given by :

So,

V is the potential difference
e is the charge on electron


V = 12431.25 volts
or

So, the potential difference through which an electron accelerates to produce x rays is
. hence, this is the required solution.
Answer:
c. Kinetic energy
Explanation:
The two types of energy involved in this problem are:
- Potential energy: it is the energy possessed by an object due to its position. It is calculated as

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object relative to the ground
From the formula, we see that the higher the object is above the ground (higher h), the larger the potential energy of the object. In this problem, the pig is falling down, so the value of h is decreasing, therefore the potential energy is decreasing as well.
- Kinetic energy: it is the energy possessed by an object due to its motion. It is given by:

where
m is the mass of the object
v is its speed
In this problem, as the pig falls down, it accelerates, so its speed increases: since the kinetic energy is proportional to the square of the speed, as the speed increases, its kinetic energy increases too. So, the correct answer is
c. Kinetic energy