Answer:
The gravitational force is related to the mass of each object.
The gravitational force is an attractive force.
Explanation:
Gravitational force is a long range force of attraction between any two masses.
Mathematically given as :

where:
are the masses
r= distance between the center of mass of the two objects.
G= gravitational constant = 
From the above relation of eq. (1) it is clear that,
Gravitational force is inversely proportional to the square of the distance and directly proportional to the masses.
The mass of an object is independent of its size due to the fact that density may vary for different objects.
The force of gravity varies with height as:

where:

gravity at height
of the center of mass of the object from the center of mass of the earth.
and we know that force:

where: m= mass of the object.
I would believe that this is false.
we assume the acceleration is constant. we choose the initial and final points 1.40s apart, bracketing the slowing-down process. then we have a straightforward problem about a particle under constant acceleration. the initial velocity is v xi =632mi/h=632mi/h( 1mi 1609m )( 3600s 1h )=282m/s (a) taking v xf =v xi +a x t with v xf =0 a x = t v xf −v xf = 1.40s 0−282m/s =−202m/s 2 this has a magnitude of approximately 20g (b) similarly x f −x i = 2 1 (v xi +v xf )t= 2 1 (282m/s+0)(1.40s)=198m
Well you know the formula is,
Power= Work/Time
So as time increases, Power Decreases, it's an inverse relationship.
Think about it like this, to have more "power" you have to be able to do a lot in a short amount of time, so by spending more time on something, your power decreases.
Answer:
deep sea will obviously be more affected because of the sea floor shaking