Answer:
CaCl2 (aq) + K2CO3(aq) ---------> CaCO3(s) + 2KCl(aq)
Explanation:
We have the reactants as calcium chloride and potassium carbonate. Recall that we are expecting that the reaction will yield a precipitate. We must keep that in mind as we seek to write its balanced chemical reaction equation.
So we now have;
CaCl2 (aq) + K2CO3(aq) ---------> CaCO3(s) + 2KCl(aq)
Recall that the rule of balancing chemical reaction equation states that the number of atoms of each element on the right side of the reaction equation must be the same as the number of atoms of the same element on the left hand side of the reaction equation.
The physical explanation is that increasing temperature increases the kinetic energy of the gas molecules. Hence, their random motion breaks more intermolecular bonds and the gas is less dissolved in the solvent. In contrast, solid solutes in water have increased solubility with increased temperatures.
A decrease in the overall volume of gases namely hydrogen would prevent nuclear fusion in a nebula.
The best way to do this is to google search each question, or look it up on quizlet.com
Answer: Option (5) is the correct answer.
Explanation:
It is known that the ground state electronic configuration of silicon is
.
And, we know that when an atom tends to gain an electron then it acquires a negative charge and when an atom tends to lose an electron then it acquires a positive charge.
As
has a +4 charge which means that it has lost 4 electrons. Hence, the electronic configuration of
is
.
According to the Aufbau principle, in the ground state of an atom or ion the electrons fill atomic orbitals of the lowest energy levels first, before filling the higher energy levels.
As 2p orbital is filled after the filling of 2s orbital.
Therefore, we can conclude that 2p orbital will be occupied by the electrons of highest energy for the
ground-state ion.