The answer would be 200000 J. the equation for kinetic energy is 1/2 mass times velocity squared. 1/2 of 1,000 is 500. and 20*20 is 400. So, multiply 400 by 500, and that gives you your answer,
Answer:
- <em>The maximum amount of copper allowed in 100 g of water is </em><u><em>0.00013 g</em></u>
Explanation:
To find the maximum amount of copper (in grams) allowed in 100 g of water use the maximum amount ratio (1.3 mg / kg) and set a proportion with the unknown amount of copper (x) and the amount of water (100 g):
First, convert 100 g of water to kg: 100 g × 1 kg / 1000 g = 0.1 kg.
Now, set the proportion:
- 1.3 mg Cu / 1 Kg H₂O = x / 0.1 kg H₂O
Solve for x:
- x = 0.1 kg H₂O × 1.3 mg Cu / 1 kg H₂O = 0.13 mg Cu
Convert mg to grams:
- 0.13 mg × 1 g / 1,000 mg = 0.00013 g
Answer: 0.00013 g of copper.
Answer:
Potassium (K) has 19 protons.
Each neutral atom of Potassium has 19 electrons.
Explanation:
A) Potassium has 19 protons because the atomic number tells us how many protons are in an atom of the element. (The atomic number is the number above the element symbol. For example, the number above "K" is 19, which is the atomic number).
B) If an atom is neutral, this means that the atom has neutral energy. Protons give positive energy and electrons give negative energy. For the atom to be neutral, the atom must have balanced energy, therefore, making the number of electrons equal to the number of protons in a neutral atom.
Answer:
1.552 moles
Explanation:
First, we'll begin by writing a balanced equation for the reaction showing how C8H18 is burn in air to produce CO2.
This is illustrated below:
2C8H18 + 25O2 -> 16CO2 + 18H2O
Next, let us calculate the number of mole of C8H18 present in 22.1g of C8H18. This is illustrated below:
Molar Mass of C8H18 = (12x8) + (18x1) = 96 + 18 = 114g/mol
Mass of C8H18 = 22.1g
Mole of C8H18 =..?
Number of mole = Mass /Molar Mass
Mole of C8H18 = 22.1/144
Mole of C8H18 = 0.194 mole
From the balanced equation above,
2 moles of C8H18 produced 16 moles of CO2.
Therefore, 0.194 mole of C8H18 will produce = (0.194x16)/2 = 1.552 moles of CO2.
Therefore, 1.552 moles of CO2 are emitted into the atmosphere when 22.1 g C8H18 is burned
Balanced chemical reaction:
C₃H₈(g) + 3H₂O(g) → 3CO(g) + 7H₂(g).
M(C₃H₈) = 44.1 g/mol; molar mass of propane.
M(H₂) = 2 g/mol; molar mass of hydrogen.
From balanced chemical reaction: n(C₃H₈) : n(H₂) = 1 : 7.
7m(C₃H₈) : M(C₃H₈) = m(H₂) : M(H₂).
7·8310 kg : 44.1 g/mol = m(H₂) : 2 g/mol.
m(H₂) = 2638.09 kg; mass of hydrogen.