Answer:
1. B has no acceleration because the straight line shows that it's a constant speed not speeding up or down.
2. A because you can see the decline in speed as time goes on
Myopia
Explanation:
myopia is a common vision condition in which you can see objects near to you clearly, but objects farther away are blurry. It occurs when the shape of your eye causes light rays to refract incorrectly, focusing images in front of your retina instead of on your retina. It can be corrected corrected with eyeglasses, contact lenses or refractive surgery.
<span>0.52%
First, let's convert that speed into m/s.
150 km/h * 1000 m/km / 3600 s/h = 41.667 m/s
Now let's see how much time gravity has to work on the ball. Divide the distance by the speed.
18 m / 41.667 m/s = 0.431996544 s
Now multiply that time by the gravitational acceleration to see what the vertical component to the ball's speed that gravity adds.
0.431996544 s * 9.8 m/s^2 = 4.233566131 m/s
Use the pythagorean theorem to get the new velocity of the ball.
sqrt(41.667^2 + 4.234^2) = 41.882 m/s
Finally, let's see what the difference is
(41.882 - 41.667)/41.667 = 0.005159959 = 0.5159959%
Rounding to 2 figures, gives 0.52%</span>
I am attaching the rest of your question so it makes sense,
<span>
Since lasers are made from stacking light waves that add together into a larger wave due to CONSTRUCTIVE INTERFERENCE.
</span>
Then, <span>light waves have that constructive interference (from question #1) because they are emitted IN PHASE with each other.
This means that they arrive at the same point of space with the same characteristics and their effects do not cancel each other, but the opposite, their intensity increases.</span>
Answer: FM radio waves, AM radio waves, yellow light, micro waves
Explanation: