Answer:
The acceleration of the body, a = 2193 m/s²
Explanation:
Given,
The mass of the body, m = 0.3 kg
The force acting on the body, F = 657.9 N
The force acting on an object is proportional to the product of mass and acceleration of the body.
F = m x a
Therefore, the acceleration of the body is
a = F / m
= 657.9 N / 0.3 kg
= 2193 m/s²
Hence, the acceleration of the body, a = 2193 m/s²
143m/s if you just perhaps by what you know you'll figure it out
Answer: D. Hydroelectric power
Explanation: Hydroelectric means water power (not exactly but "hydro" is water and electric is well self explanatory)
Answer:
a. one-half as great
Explanation:
The power developed by the first lifter is one-half as great as that of the second person.
Power is defined as the rate at which work is done;
Power =
Since the two lifters do the same work at different time, let us estimate their power;
P₁ =
P₂ =
We see that for P₁, power is half of the work done whereas in P₂ power is the same as the work done.
Therefore,
The power of the first weight lifter is one-half the second lifter.
Answer:
108 km
Explanation:
The conversion factor between meters and feet is
1 m = 3.28 ft
So the second altitude, written in feet, can be rewritten in meters as

or in kilometers,

the first altitude in kilometers is

so the difference between the two altitudes is
