Answer:
Explanation:
Charge on uranium ion = charge of a single electron
= 1.6 x 10⁻¹⁹ C
charge on doubly ionised iron atom = charge of 2 electron
= 2 x 1.6 x 10⁻¹⁹ C = 3.2 x 10⁻¹⁹ C
Let the required distance from uranium ion be d .
force on electron at distance d from uranium ion
= 9 x 10⁹ x 1.6 x 10⁻¹⁹ / r²
force on electron at distance 61.10 x 10⁻⁹ - r from iron ion
= 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
For equilibrium ,
9 x 10⁹ x 1.6 x 10⁻¹⁹ / r² = 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
2 d² = (61.10 x 10⁻⁹ - r )²
1.414 r = 61.10 x 10⁻⁹ - r
2.414 r = 61.10 x 10⁻⁹
r = 25.31 nm .
Answer:
<h3>1.43m/s²</h3>
Explanation:
According to newtons second law.
F = mass * acceleration
If the doll has a mass of 0.2 kg, and the robot has a mass of 0.5 kg, the resulting mass will be 0.7kg
Force applied = 1N
acceleration = Force/mass
Substitute the values and get acceleration
acceleration = 1/0.7
acceleration = 1.43m/s²
Hence the magnitude of the acceleration of the robot is 1.43m/s²
By definition we have that
force=dP/dt,
where
p is momentum
so
<span>momentum is force*time
p= 15*3 = 45 Ns , west.
</span><span>the change in momentum of the object is 45 N.s</span>
Answer:
Explanation:
If a baseball is hit into the air with a velocity of 27 m/s, we want to determine the maximum height of the ball. Using the projecile formula;
Max height H = u²/2g
u is the initial velocity of the body = 27m/s
g is the acceleration due to gravity = 9.81m/s²
H = 27²/2(9.81)
H = 729/19.62
H = 37.16m
Hence the ball went 37.16m high