Answer:
sectores industriales, comerciales o públicos, o para el uso doméstico.
Explanation:
Answer:
See explanation below
Explanation:
Hypo-eutectoid steel has less than 0,8% of C in its composition.
It is composed by pearlite and α-ferrite, whereas Hyper-eutectoid steel has between 0.8% and 2% of C, composed by pearlite and cementite.
Ferrite has a higher tensile strength than cementite but cementite is harder.
Considering that hypoeutectoid steel contains ferrite at grain boundaries and pearlite inside grains whereas hypereutectoid steel contains a higher amount of cementite, the following properties are obtainable:
Hypo-eutectoid steel has higher yield strength than Hyper-eutectoid steel
Hypo-eutectoid steel is more ductile than Hyper-eutectoid steel
Hyper-eutectoid steel is harder than Hyper-eutectoid steel
Hypo-eutectoid steel has more tensile strength than Hyper-eutectoid steel.
When making a knife or axe blade, I would choose Hyper-eutectoid steel alloy because
1. It is harder
2. It has low cost
3. It is lighter
When making a die to press powders or stamp a softer metals, I will choose hypo-eutectoid steel alloy because
1. It is ductile
2. It has high tensile strength
3. It is durable
Está constituido por dos bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferromagnético, pero aisladas entre sí eléctricamente. ... Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente.
Answer:
Explanation:
i took the test and screenshot it
Answer:
The statement regarding the mass rate of flow is mathematically represented as follows 
Explanation:
A junction of 3 pipes with indicated mass rates of flow is indicated in the attached figure
As a basic sense of intuition we know that the mass of the water that is in the pipe junction at any instant of time is conserved as the junction does not accumulate any mass.
The above statement can be mathematically written as

this is known as equation of conservation of mass / Equation of continuity.
Now we know that in a time 't' the volume that enter's the Junction 'O' is
1) From pipe 1 = 
1) From pipe 2 = 
Mass leaving the junction 'O' in the same time equals
From pipe 3 = 
From the basic relation of density, volume and mass we have

Using the above relations in our basic equation of continuity we obtain

Thus the mass flow rate equation becomes 