Answer:
v =
m/s
Explanation:
The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:

The velocity vector v is the first derivative of the position vector r with respect to time:
![\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%5Bvcos%28%5Comega%20t%29-%5Comega%20vtsin%28%5Comega%20t%29%5D%5Chat%7Bx%7D%2B%5Bvsin%28%5Comega%20t%29%2B%5Comega%20vtcos%28%5Comega%20t%29%5D%5Chat%7By%7D)
The given values are:


Answer:The mass of an object is 52 kg.
Explanation:
Gravitational force on the object ,F=510 N
Acceleration due to gravity = g = 
Mass of the object = m
Force = mass × acceleration


The mass of an object is 52 kg.
-- the big flash of light and heat coming out of the head
of a match when it gets hot enough;
-- the explosion of a tiny bit of gunpowder that can send
a bullet many miles;
-- the energy captured from a few drops of burning gasoline
that moves a car;
-- the energy in the carbohydrates you eat that is used
to move you around;
Answer:
Visible Light
wavelength = 4000 - 7000 Angstroms = 400 - 700 milli-microns
1 A unit = 10^-10 m
1 mμ = 10^-9 m