Answer: 48800g
Explanation:
Using the mathematical relation : Moles = Mass / Molar Mass
Moles = 488
Molar mass of CaCO3 = 40 + 12 + (16 x 3) = 100g/mol
Therefore
488 = mass / 100 = 48800g
Answer:
The following relationship makes this possible: 1 mole of any gas at standard temperature and pressure (273 K and 1 atm) occupies a volume of 22.4 L.
Explanation:
Answer:
4.42 × 10⁻³⁷ m
Explanation:
Step 1: Given and required data
- Mass of the body (m): 1 kg
- Velocity of the body (v): 1500 m/s
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
Step 2: Calculate the de Broglie wavelenght (λ) of the body
We will use de Broglie's equation.
λ = h / m × v
λ = (6.63 × 10⁻³⁴ J.s) / 1 kg × (1500 m/s) = 4.42 × 10⁻³⁷ m