Answer:
Here's what I get
Explanation:
1. Sugar
(a) Dissolving in water
The white solid dissolves in water to give a colourless solution. There is no evidence that a new substance is being produced.
(b) Addition of sodium hydroxide
Adding the colourless solution of sodium hydroxide to the colourless sugar solution gives a colourless solution. There is no evidence that a new substance is being produced.
2. Magnesium sulfate
(a) Dissolving in water
The colourless crystals dissolve in water to give a colourless solution. There is no evidence that a new substance is being produced.
(b) Addition of sodium hydroxide
Adding the colourless solution of sodium hydroxide to the colourless solution of magnesium sulfate gives a white precipitate (see image). This is evidence that a new substance is being produced.
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Galvanization is defined as the process in which a protective layer of zinc is applied to iron or steel to prevent the metal from rusting.
Zinc prevents the oxidation of iron and acts as a reducing agent in the process.
The half reaction for the process follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u> 
Net chemical equation: 
Hence, the balanced chemical equation is written above.
Answer:
The chemical elements are arranged in order of increasing atomic number.
Explanation:
Hydrogen = 1
Helium = 2
Lithium = 3
Answer: Electronegativity increases as the size of an atom decrease.
Explanation: Electronegativity is the measure of the ability of an atom in a bond to attract electrons to itself.
Electronegativity increases across a period and decreases down a group.
Towards the left of the table, valence shells are less than half full, so these atoms (metals) tend
to lose electrons and have low electronegativity. Towards the right of the table, valence shells are more than half full, so these atoms (nonmetals) tend to gain electrons and have high electronegativity.
Down a group, the number of energy levels (n) increases, and so does the distance between the nucleus and the outermost orbital. The increased distance and the increased shielding weaken the nuclear attraction, and so an atom can’t attract electrons as strongly.