This may help you
First write and balance the equation, being:
CaCO3 - CaO + CO2
Then, using the periodic table, find the molecular masses of CaCO3 and of CaO, finding their ratio. That will be 100g:56g or 0.1kg:0.056kg. Since you have 4.7kg of CaCO3, it corresponds to Xkg of CaO. Making x the subject, it should be X= 4.7*0.056/100=0,002632
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, for 0.904 g of precipitate, that is lead (II) iodide, we can compute the initial moles of lead (II) ions in lead (II) nitrate:

Finally, the resulting molarity in 30.8 mL (0.0308 L):

Regards.
Answer:
Explanation: E. 12 because it has the highest acidity rate.
<span>Well, during the day, the water, as well as the surfaces surrounding the water, are heated by various thermodynamic processes: conduction, convection, radiation, etc. This in turn warms the water molecules in the lakes, streams, rivers, and oceans, thereby transferring heat (their kinetic energy) to the water molecules, which in turn receive that energy from the surrounding surfaces, or directly via radiation/insolation from the sun. When the water molecules attain enough energy, some of them attain enough energy to escape the surface of the liquid and enter the gas phase. Hence, as water is heated, more and more water molecules attain enough kinetic energy to enter the gas phase.</span>
The answer is 69.69 miles per hour