Answer: Heating the hydrated forms of cobalt chloride reverses the reactions above, returning cobalt chloride to the blue, water-free, or anhydrous, state. Water is "liberated" in these reactions, known as dehydration reactions.
Explanation:
Answer:
Oxidation occurs simultaneously with reduction.
Answer:
HI.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
Rate of effusion ∝ 1/√molar mass.
- <em>(Rate of effusion of O₂) / (Rate of effusion of unknown gas) = (√molar mass of unknown gas) / (√molar mass of O₂).</em>
- An unknown gas effuses at one half the speed of that of oxygen.
∵ Rate of effusion of unknown gas = 1/2 (Rate of effusion of O₂)
∴ (Rate of effusion of O₂) / (Rate of effusion of unknown gas) = 2.
Molar mass of O₂ = 32.0 g/mol.
∵ (Rate of effusion of O₂) / (Rate of effusion of unknown gas) = (√molar mass of unknown gas) / (√molar mass of O₂).
∴ 2.0 = (√molar mass of unknown gas) / √32.0.
(
√molar mass of unknown gas) = 2.0 x √32.0
By squaring the both sides:
∴ molar mass of unknown gas = (2.0 x √32.0)² = 128 g/mol.
∴ The molar mass of sulfur dioxide = 80.91 g/mol and the molar mass of HI = 127.911 g/mol.
<em>So, the unknown gas is HI.</em>
<em></em>
Answer:
3040 mmHg
Explanation:
Here
we have to convert 4.00 atm to mmHg
As we know that
The number of atm in 1 mmHg is 0.0013157895567935
Now there is 4.00 atm So, in mmHg it would be
And, according to this, the working is given below:
= 4 ÷ 0.0013157895567935
= 3,039.99
= 3040 mmHg
Hence, the last option is correct
And, the same is relevant and considered too