An electron is a negatively charged subatomic particle present in the space outside the nucleus of an atom. The loss of electron from an atom results in the formation of cation whereas gaining of electron by an atom results in the formation of anion. The cation possesses positive charge due to loss of electron and anion possesses negative charge due to gain of electron.
The neutral atom has no charge on it.
For given atomic symbols:
The atomic number of hydrogen is 1 and the given symbol has no charge that means it is in its neutral state. So, the number of electrons in
is 1.
The atomic number of helium is 2 and the given symbol has no charge that means it is in its neutral state. So, the number of electrons in
is 2.
The atomic number of hydrogen is 1 and the given symbol has a negative charge that represents a gain of electron. So, the number of electrons in
is 2.
The atomic number of helium is 2 and the given symbol has two positive charge that represents loss of two electrons. So, the number of electrons in
is 0.
Hence,
has no electrons.
HBr reacts with LiOH and forms LiBr and H₂O as the products. The balanced reaction is
LiOH(aq) + HBr(aq) → LiBr(aq) + H₂O(l)
Molarity (M) = moles of solute (mol) / volume of the solution (L)
Molarity of LiOH = 0.205 M
Volume of LiOH = 29.15 mL = 29.15 x 10⁻³ L
Hence,
moles of LiOH = molarity x volume of the solution
= 0.205 M x 29.15 x 10⁻³ L
= 5.97575 x 10⁻³ mol
The stoichiometric ratio between LiOH and HBr is 1 : 1.
Hence,
moles of HBr in 25.0 mL = moles of LiOH added
= 5.97575 x 10⁻³ mol
Hence, molarity of HBr = 5.97575 x 10⁻³ mol / 25.00 x 10⁻³ L
= 0.23903 M
≈ 0.239 M
Hence, the molarity of the HBr is 0.239 M.
Plant cells have plastids, cell wall, large and permanent vacuoles whereas animal cells don't
Answer: 72 grams of
are needed to completely burn 19.7 g 
Explanation:
According to avogadro's law, 1 mole of every substance weighs equal to molecular mass and contains avogadro's number
of particles.
To calculate the number of moles, we use the equation:

Putting in the values we get:


According to stoichiometry:
1 mole of
requires 5 moles of oxygen
0.45 moles of
require=
moles of oxygen
Mass of 
72 grams of
are needed to completely burn 19.7 g 
Answer:
Increased the concentration
Explanation:
Complete Question
Open the simulation by pushing the play button. Begin by dragging the concentration tester overto the liquid and add drink mix until the concentration reaches approximately 2.oo mol/L. This means there are 2.00 moles of the drink mix in 1 Liter of the solution. Add more drink mix until you notice a color change. Have you increased or decreased the concentration? (Higher number means a higher concentration).
Solution
Drink mix is basically the solute which is added to solvent i.e water.
The higher is the amount of drink mix in the solvent, the higher is the concentration of the solute and hence darker is the color of the drink.
Hence, in the case the concentration of the drink has been increased.