Answer:
goes down regardless of whether the reaction is exothermic or endothermic
Explanation:
The activation energy is the minimum energy the reactants in a chemical reaction will have to reach in order to be transformed into products.
Hence, the higher the activation energy of a reaction, the lower the reaction rate and the lower the activation energy of a reaction, the higher the reaction rate.
Activation energy is independent of whether a reaction is exothermic or endothermic.
<em>Therefore, as activation energy increases, reaction rate goes down irrespective of whether is is exothermic or otherwise.</em>
Answer:
H2(g)+I2(s)→2HI(s)
Explanation:
Hello there!
In this case, according to the given information and unbalanced chemical reaction, we infer it must be balanced in agreement with the law of conservation of mass because the reactants side has two hydrogen and iodine atoms whereas the products side has just one. In such a way, by placing a 2 on HI, we obtain the following balanced reaction:
H2(g)+I2(s)→2HI(s)
Regards!
C. 6 Valence electrons. Remember that the family that they are in will determine the number of valence electrons that element will have. Sulfur is in family 16 so it will have 6 Valence electrons.
For the 1st order reactions,rate constant (k) is mathematically expressed as
k =

where, t = time
Co = initial conc. of reactant
Ct = conc. of reactant after time 't'
Given: k = <span>2.20 × 10^-5 s-1, t = 2 hours = 7200 s
Therefore, we have
</span>2.20 × 10^-5 =

∴

= 0.06877
∴,

= 1.1716
∴, Ct = 85.35%
Thus, <span>
85.35 % of the initial amount of SO2Cl2 will remain after 2.00 hours.</span>
1.0566 gal.
H O W E V E R
the constant formula you can use for solving and simplifying equations such as these, you can simply look up the metric system online and figure one out. hoped this helped!