Answer:
See the answers below.
Explanation:
to solve this problem we must make a free body diagram, with the forces acting on the metal rod.
i)
The center of gravity of the rod is concentrated in half the distance, that is, from the end of the bar to the center there is 40 [cm]. This can be seen in the attached free body diagram.
We have only two equilibrium equations, a summation of forces on the Y-axis equal to zero, and a summation of moments on any point equal to zero.
For the summation of forces we will take the forces upwards as positive and the negative forces downwards.
ΣF = 0

Now we perform a sum of moments equal to zero around the point of attachment of the string with the metal bar. Let's take as a positive the moment of the force that rotates the metal bar counterclockwise.
ii) In the free body diagram we can see that the force acts at 18 [cm] of the string.
ΣM = 0
![(15*9) - (18*W) = 0\\135 = 18*W\\W = 7.5 [N]](https://tex.z-dn.net/?f=%2815%2A9%29%20-%20%2818%2AW%29%20%3D%200%5C%5C135%20%3D%2018%2AW%5C%5CW%20%3D%207.5%20%5BN%5D)
The total work is
(mass of the elevator, kg) x (9.8 m/s²) x (9.0 m) Joules .
Answer:
D. 130 J
Explanation:
The coefficient of performance for a machine that is being used to cool, is given by:

Here
is the heat removed from the cold reservoir, W is the work required, that is, the energy required to remove the heat from the interior of the house,
is the cold temperature and
is the hot temperature. Recall use absolutes temperatures(
). Replacing and solving for W:

Work=f.d
Work=100*50 = 500
Power = work/time = 500/4
=125 watt
Answer:


Explanation:
The statement is described physically by means of the Principle of Momentum Conservation. Let assume that first person moves in the positive direction:
First Person

Second Person

The final velocities of the two people after the snowball is exchanged is:

