Answer:
When the object is placed between centre of curvature and principal focus of a concave mirror the image formed is beyond C as shown in the figure and it is real, inverted and magnified.
Answer:
W = 100000 J = 100 KJ
Explanation:
Here we will use the most basic and general formula of work, which is as follows:

where,
W = Work Done = ?
F = Force Required = 200 N
d = Length of Track = 500 m
Therefore,

<u>W = 100000 J = 100 KJ</u>
Answer:
True
Explanation:
Pascal's law says that pressure applied to an enclosed fluid will be transmitted without a change in magnitude to every point of the fluid and to the walls of the container. The pressure at any point in the fluid is equal in all directions.
The magnitude of the charge on the balloon is 1.6 x 10⁻¹² C.
<h3>
What is the magnitude of the charge on the ball?</h3>
The magnitude of the charge on the ball is calculated by determining the total charge equivalent to the given number of electrons.
The charge of one electron = 1.6 x 10⁻¹⁹ Coulombs
Now, we are going to estimated the total charge of 1 x 10⁷ electrons.
1 electron = 1.6 x 10⁻¹⁹ C
1 x 10⁷ electrons = ?
= (1 x 10⁷ electrons x 1.6 x 10⁻¹⁹ C) / (1 electron)
= 1.6 x 10⁻¹² C
Thus, the total charge of 1 x 10⁷ electrons is obtained by multiplying the magnitude of charge of one electron to the entire given electrons.
Learn more about charge of electron here: brainly.com/question/9317875
#SPJ1
Answer:
Wn = 9.14 x 10¹⁷ N
Explanation:
First we need to find our mass. For this purpose we use the following formula:
W = mg
m = W/g
where,
W = Weight = 675 N
g = Acceleration due to gravity on Surface of Earth = 9.8 m/s²
m = Mass = ?
Therefore,
m = (675 N)/(9.8 m/s²)
m = 68.88 kg
Now, we need to find the value of acceleration due to gravity on the surface of Neutron Star. For this purpose we use the following formula:
gn = (G)(Mn)/(Rn)²
where,
gn = acceleration due to gravity on surface of neutron star = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Mn = Mass of Neutron Star = Mass of Sun = 1.99 x 10³⁰ kg
Rn = Radius of neutron Star = 20 km/2 = 10 km = 10000 m
Therefore,
gn = (6.67 x 10⁻¹¹ N.m²/kg²)(1.99 x 10³⁰ kg)/(10000)
gn = 13.27 x 10¹⁵ m/s²
Now, my weight on neutron star will be:
Wn = m(gn)
Wn = (68.88)(13.27 x 10¹⁵ m/s²)
<u>Wn = 9.14 x 10¹⁷ N</u>