Answer:
time will elapse before it return to its staring point is 23.6 ns
Explanation:
given data
speed u = 2.45 ×
m/s
uniform electric field E = 1.18 ×
N/C
to find out
How much time will elapse before it returns to its starting point
solution
we find acceleration first by electrostatic force that is
F = Eq
here
F = ma by newton law
so
ma = Eq
here m is mass , a is acceleration and E is uniform electric field and q is charge of electron
so
put here all value
9.11 ×
kg ×a = 1.18 ×
× 1.602 ×
a = 20.75 ×
m/s²
so acceleration is 20.75 ×
m/s²
and
time required by electron before come rest is
use equation of motion
v = u + at
here v is zero and u is speed given and t is time so put all value
2.45 ×
= 0 + 20.75 ×
(t)
t = 11.80 ×
s
so time will elapse before it return to its staring point is
time = 2t
time = 2 ×11.80 ×
time is 23.6 ×
s
time will elapse before it return to its staring point is 23.6 ns
I'm not that smart but I think it is c I really hope It helps
Answer:
2Ω
Explanation:
If a 18Ω resistance is cut into three equal parts each of the resistance will be 18Ω/3 = 6Ω
Equivalent ratio in parallel is expressed as:
1/R = 1/6 + 1/6 + 1/6
1/R = 3/6
Cross multiply
3R = 6
R = 6/3
R = 2Ω
Hence the required equivalent resistance is 2Ω
Answer:
Time of flight A is greatest
Explanation:
Let u₁ , u₂, u₃ be their initial velocity and θ₁ , θ₂ and θ₃ be their angle of projection. They all achieve a common highest height of H.
So
H = u₁² sin²θ₁ /2g
H = u₂² sin²θ₂ /2g
H = u₃² sin²θ₃ /2g
On the basis of these equation we can write
u₁ sinθ₁ =u₂ sinθ₂=u₃ sinθ₃
For maximum range we can write
D = u₁² sin2θ₁ /g
1.5 D = u₂² sin2θ₂ / g
2 D =u₃² sin2θ₃ / g
1.5 D / D = u₂² sin2θ₂ /u₁² sin2θ₁
1.5 = u₂ cosθ₂ /u₁ cosθ₁ ( since , u₁ sinθ₁ =u₂ sinθ₂ )
u₂ cosθ₂ >u₁ cosθ₁
u₂ sinθ₂ < u₁ sinθ₁
2u₂ sinθ₂ / g < 2u₁ sinθ₁ /g
Time of flight B < Time of flight A
Similarly we can prove
Time of flight C < Time of flight B
Hence Time of flight A is greatest .