Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
Answer:
A. 12 miles
B. 9 miles
C. 2 hours
D. 5 hours
E. Max did not move
F. 9 hours
G. 5 hours
hope this helps :)
Step-by-step explanation:
h = 50 cos ( pie(x - 10 )/15 ) + 52
80 = 50 cos ( pie( x - 10 )/15 ) + 52
80 - 52 = 50 cos ( pie( x - 10 )/15 )
28 = 50 cos ( pie( x - 10 )/15 )
cos ( pie( x - 10 )/15 ) = 28/50
cos ( pie( x - 10 )/15 ) = 56/100
cos ( pie( x - 10 )/15 ) = cos ( 56 )
cos ( pie( x - 10 )/15 ) = cos ( 0.3111 pie )
Thus ;
pie( x - 10 )/15 = 0.3111 pie
( x - 10 )/15 = 0.3111
x - 10 = 15 × 0.3111
x - 10 = 4.6665
x = 10 + 4.6665
x = 14.6665 [ approximately ]
Thus the correct answer is exactly what u chose goodjob .....
Answer: x=4
Step-by-step explanation: Add 3 to both sides, Divide both sides by 22
4y ≥ 3x + 2
Plugging in the values in the options, then the required values are when x = 6 and y = 5, then
4(5) ≥ 3(6) + 2
20 ≥ 18 + 2
20 ≥ 20