<u>Answer:</u> The number of moles of gas in bicycle tire is 0.210 moles
<u>Explanation:</u>
To calculate the moles of gas, we use the equation given by ideal gas which follows:

where,
P = pressure of the gas = 737 torr
V = Volume of the gas = 5.30 L
T = Temperature of the gas = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
R = Gas constant = 
n = number of moles of gas = ?
Putting values in above equation, we get:

Hence, the number of moles of gas in bicycle tire is 0.210 moles
Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Answer: 6.64 moles of carbon.
Explanation:
Given data:
Number of moles of C = ?
Number of moles of CCl₂F₂ = 6.64 mol
Solution:
In one mole of CCl₂F₂ there is one mole of carbon two moles of chlorine and two moles of fluorine are present.
In 6.6 moles of CCl₂F₂ :
Moles of carbon = 6.64 × 1 = 6.64 moles of carbon.
Moles of chlorine = 6.64× 2 = 13.28 moles of chlorine
Moles of fluorine = 6.64× 2 = 13.28 moles of fluorine
Read more on Brainly.com - brainly.com/question/15602143#readmore