The reason for people to swim easier in salt water than fresh water is because of buoyancy
Explanation:
In fresh water there is lack of minerals and has fresh water alone. The density of fresh water is 1000 kg/m³. Hence, in fresh water cannot exert the suitable buoyancy for the swimmer to float easier than that of salt water.
But in Salt water due to enrichment of salts and minerals it is found that salt water has more density than fresh water. Here the salt water offers more buoyancy to the swimmer to lift him up in the water surface and to swim faster and easier than fresh water.
It is similar to that egg floats in the salt water and sinks inside the fresh water because of its own body weight.
Answer:
2271.16N/C upward
Explanation:
The diagram well illustrate all the forces acting on the mass. The weight is acting downward and the force is acting upward in other to balance the weight.since the question says it is motionless, then indeed the forces are balanced.
First we determine the downward weight using

Hence for a mass of 3.82g 0r 0.00382kg we have the weight to be


To calculate the electric field,

Since the charge on the mass is negative, in order to generate upward force, there must be a like charge below it that is repelling it, Hebce we can conclude that the electric field lines are upward.
Hence the magnitude of the electric force is 2271.16N/C and the direction is upward
The difference between speed and velocity is that the speed is a scalar quantity which means that you can say that this object has a speed of x m/s but you don't have to define its direction
while the velocity is a vector quantity which means that you have to express the velocity by which it moves in x,y and z directions and its norm is the speed
Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg