Answer:
The molar concentration of Cu²⁺ in the initial solution is 6.964x10⁻⁴ M.
Explanation:
The first step to solving this problem is calculating the number of moles of Cu(NO₃)₂ added to the solution:

n = 1.375x10⁻⁵ mol
The second step is relating the number of moles to the signal. We know the the n calculated before is equivalent to a signal increase of 19.9 units (45.1-25.2):
1.375x10⁻⁵ mol _________ 19.9 units
x _________ 25.2 units
x = 1.741x10⁻⁵mol
Finally, we can calculate the Cu²⁺ concentration :
C = 1.741x10⁻⁵mol / 0.025 L
C = 6.964x10⁻⁴ M
Direct electron transfer from a a singlet reduced species to a triplet oxidizing species is quantum-mechanically forbidden.
<h3><u>Transfer from singlet to triplet:</u></h3>
- Either an excited singlet state or an excited triplet state will occur when an electron in a molecule with a singlet ground state is stimulated (through radiation absorption) to a higher energy level.
- All electron spins in a molecule electronic state known as a singlet are coupled.
- In other words, the ground state electron and the stimulated electron's spin are still coupled (a pair of electrons in the same energy level must have opposite spins, per the Pauli exclusion principle).
- The excited electron and ground state electron are parallel in a triplet state because they are no longer coupled (same spin).
- It is less likely that a triplet state would arise when the molecule absorbs radiation since excitation to a triplet state necessitates an additional "forbidden" spin transfer.
To view more questions on quantum mechanism, refer to:
brainly.com/question/13639384
#SPJ4
The softest mineral in the Mohs Hardness Scale is talc.
Talc is often used in baby powder and corn starch, among other things. Talc cleaves into thin sheets, and it is held together only by van de Waals bonds, which allows these sheets to slip past each other. This gives the mineral its softness and it is often valued as a high-temperature lubricant.