If you apply a little bit of force, one will move easier than the other since it is lighter.
Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.
A translucent object allows light to travel through its material.
Answer:
V=15.3 m/s
Explanation:
To solve this problem, we have to use the energy conservation theorem:

the elastic potencial energy is given by:

The work is defined as:

this work is negative because is opposite to the movement.
The gravitational potencial energy at 2.5 m aboves is given by:

the gravitational potential energy at the ground and the kinetic energy at the begining are 0.

Answer:
B
Explanation:
kinetic energy (KE) is the energy possessed by moving bodies. It can be expressed as:
KE =
m
Where: m is the mass of the object, and v its speed.
For example, a stone of mass 2kg was thrown and moves with a speed of 3 m/s. Determine the kinetic energy of the stone.
Thus,
KE =
x 2 x 
= 9
KE = 9.0 Joules
Assume that the speed of the stone was 4 m/s, then its KE would be:
KE =
x 2 x 
= 16
KE = 16.0 Joules
Therefore, it can be observed that as speed increases, the kinetic energy increases. Thus option B is appropriate.