Answer:
m = B²qR² / 2 V
Explanation:
If v be the velocity after acceleration under potential difference of V
kinetic energy = loss of electric potential energy
1/2 m v² = Vq ,
v² = 2 Vq / m ----------------------- ( 1 )
In magnetic field , charged particle comes in circular motion in which magnetic force provides centripetal force
magnetic force = centripetal force
Bqv = mv² / R
v = BqR / m
v² = B²q²R² / m² ------------------------- (2)
from (1) and (2)
B²q²R² / m² = 2 Vq / m
m = B²q²R² / 2 Vq
m = B²qR² / 2 V
(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
The velocity at the maximum height will always be 0. Therefore, you will count your final velocity as 0, and your initial velocity as 35 m/s. Next, we know that the acceleration will be 9.8 m/s^2. How? Because the ball is thrown directly upward, and the only force acting on it will be the force of gravity pushing it back down.
The formula we use is h = (Vf^2 - Vi^2) / (2*-9.8m/s^2)
Plugging everything in, we have h = (0-1225)/(19.6) = 62.5 meters is the maximum height.
<u>We are given:</u>
Mass of the Steelhead(m) = 9 kg
Velocity of the Steelhead(v) = 16 m/s
<u>Calculating the Kinetic Energy:</u>
KE = 1/2mv²
replacing the variables
KE = 1/2 * 9 * (16)²
KE = 1152 Joules