1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nignag [31]
3 years ago
6

Please help me with this

Physics
1 answer:
mezya [45]3 years ago
5 0

Answer:

.067 so C

Explanation:

I asked my sister who is in 2nd grade and she said it was right so you are good! =). have a great day!

You might be interested in
A head-on, elastic collision between two particles with equal initial speed v leaves the more massive particle (mass m1) at rest
ZanzabumX [31]
<span>1/3 The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r" The equation for kinetic energy is E = 1/2MV^2. So the energy for the system prior to collision is 0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5 The energy after the collision is 0.5rv^2 Setting the two equations equal to each other 0.5r + 0.5 = 0.5rv^2 r + 1 = rv^2 (r + 1)/r = v^2 sqrt((r + 1)/r) = v The momentum prior to collision is -1r + 1 Momentum after collision is rv Setting the equations equal to each other rv = -1r + 1 rv +1r = 1 r(v+1) = 1 Now we have 2 equations with 2 unknowns. sqrt((r + 1)/r) = v r(v+1) = 1 Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r. r(sqrt((r + 1)/r)+1) = 1 r*sqrt((r + 1)/r) + r = 1 r*sqrt(1+1/r) + r = 1 r*sqrt(1+1/r) = 1 - r r^2*(1+1/r) = 1 - 2r + r^2 r^2 + r = 1 - 2r + r^2 r = 1 - 2r 3r = 1 r = 1/3 So the less massive particle is 1/3 the mass of the more massive particle.</span>
8 0
3 years ago
Read 2 more answers
A 0.0250-kg bullet is accelerated from rest to a speed of 550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is much worse
kondaur [170]

Answer:

a) 4.583 m/s

b) 31.505 J

c) 0.491 m/s

d) 3.375 J

e)

   p_player = (110 kg)(8 m/s) = 880 kg m/s

   p_ball = (0.41 kg)(25 m/s) = 10.25 kg m/s

Explanation:

HI!

a)

We can calculate the recoil velocity by conservation of momentum, remember that p=mv.

The momentum of the bullet is:

p_b = (0.0250 kg)*(550 m/s )

The momentum of the rifle is:

p_r = (3 kg) * v

Since the total initial momentum is zero:

p_b = p_r

That is:

v = (550 m/s ) (0.0250 kg/ 3 kg ) = 4.583 m/s

b)

The kinetic energy gained by the rifle is:

K = (1/2) m v^2 = (1/2) *(3 kg) *(4.583 m/s)^2 = 31.505 J

c)

We use the same formula as in a), but with m=28kg instead of 3 kg

v = (550 m/s ) (0.0250 kg/ 28 kg ) = 0.491 m/s

d)

Again, the same formula as b, but with m=28 and v=0.491 m/s

K = 3.375 J

e)

p_player = (110 kg)(8 m/s) = 880 kg m/s

p_ball = (0.41 kg)(25 m/s) = 10.25 kg m/s

I believe that the kinetic energy is more related to the problem than the momentum. The relation between these two quantities is:

K = p^2/(2m)

usiing this relation, we get:

K_player = 3520 J

K_ball =  128.125 J

Therefore the kinetic energy of the player is around 27 time larger than the kinetic energy of the ball, that being said, the pain of being tackled by that player is around 27 times greater that being hit by the ball!

4 0
3 years ago
A train is accelerating at a rate of 2 km/hr/s.  If its initial velocity is 20 km/hr, what is its velocity after 30 seconds?
Mademuasel [1]
Here it is. *WARNING* VERY LONG ANSWER

________________________________________... 
<span>11) If Galileo had dropped a 5.0 kg cannon ball to the ground from a height of 12 m, the change in PE of the cannon ball would have been product of mass(m),acceleration(g)and height(h) </span>

<span>The change in PE =mgh=5*9.8*12=588 J </span>
<span>______________________________________... </span>
<span>12.) The 2000 Belmont Stakes winner, Commendable, ran the horse race at an average speed = v = 15.98 m/s. </span>

<span>Commendable and jockey Pat Day had a combined mass =M= 550.0 kg, </span>

<span>Their KE as they crossed the line=(1/2)Mv^2 </span>

<span>Their KE as they crossed the line=0.5*550*(15.98)^2 </span>

<span>Their KE as they crossed the line is 70224.11 J </span>

<span>______________________________________... </span>
<span>13)Brittany is changing the tire of her car on a steep hill of height =H= 20.0 m </span>

<span>She trips and drops the spare tire of mass = m = 10.0 kg, </span>

<span>The tire rolls down the hill with an intial speed = u = 2.00 m/s. </span>

<span>The height of top of the next hill = h = 5.00 m </span>

<span>Initial total mechanical energy =PE+KE=mgH+(1/2)mu^2 </span>

<span>Initial total mechanical energy =mgH+(1/2)mu^2 </span>

<span>Suppose the final speed at the top of second hill is v </span>

<span>Final total mechanical energy =PE+KE=mgh+(1/2)mv^2 </span>

<span>As mechanical energy is conserved, </span>

<span>Final total mechanical energy =Initial total mechanical energy </span>

<span>mgh+(1/2)mv^2=mgH+(1/2)mu^2 </span>

<span>v = sq rt [u^2+2g(H-h)] </span>

<span>v = sq rt [4+2*9.8(20-5)] </span>

<span>v = sq rt 298 </span>

<span>v =17.2627 m/s </span>

<span>The speed of the tire at the top of the next hill is 17.2627 m/s </span>
<span>______________________________________... </span>
<span>14.) A Mexican jumping bean jumps with the aid of a small worm that lives inside the bean. </span>

<span>a.)The mass of bean = m = 2.0 g </span>

<span>Height up to which the been jumps = h = 1.0 cm from hand </span>

<span>Potential energy gained in reaching its highest point= mgh=1.96*10^-4 J or 1960 erg </span>

<span>b.) The speed as the bean lands back in the palm of your hand =v=sq rt2gh =sqrt 0.196 =0.4427 m/s or 44.27 cm/s </span>
<span>_____________________________ </span>
<span>15.) A 500.-kg horse is standing at the top of a muddy hill on a rainy day. The hill is 100.0 m long with a vertical drop of 30.0 m. The pig slips and begins to slide down the hill. </span>

<span>The pig's speed a the bottom of the hill = sq rt 2gh = sq rt 2*9.8*30 =sq rt 588 =24.249 m/s </span>
<span>__________________________________ </span>
<span>16.) While on the moon, the Apollo astronauts Neil Armstrong jumped up with an intitial speed 'u'of 1.51 m/s to a height 'h' of 0.700 m, </span>

<span>The gravitational acceleration he experienced = u^2/2h = 2.2801 /(2*0.7) = 1.629 m/s^2 </span>
<span>______________________________________... </span>

<span>EDIT </span>
<span>1.) A train is accelerating at a rate = a = 2.0 km/hr/s. </span>

<span>Acceleration </span>

<span>Initial velocity = u = 20 km/hr, </span>

<span>Velocity after 30 seconds = v = u + at </span>

<span>Velocity after 30 seconds = v = 20 km/hr + 2 (km/hr/s)*30s = </span>

<span>Velocity after 30 seconds = v = 20 km/hr + 60 km/hr = 80 km/ hr </span>

<span>Velocity after 30 seconds = v = 80 km/hr=22.22 m/s </span>
<span>_______________________________- </span>
<span>2.) A runner achieves a velocity of 11.1 m/s 9 s after he begins. </span>

<span>His acceleration = a =11.1/9=1.233 m/s^2 </span>

<span>Distance he covered = s = (1/2)at^2=49.95 m</span>
7 0
3 years ago
What accounts for the two precipitation peaks in mbandaka?
slava [35]

The two precipitation peaks in Mbandaka during March to April and September to November is due to the intertropical convergence zone.

Intertropical convergence zone is a narrow zone located near the equator. It is where the northern and southern air masses intersect which results to low atmospheric pressure. Due to the intertropical convergence zone’s meeting of air masses, often times the air pressure are lower which will results to colder air, or even rainfall during the period of March to April, and most especially September to November in Mbandaka.

<span>Since Mbandaka is located at the cented of Tumba-Ngiri-Maindombe area, which is named as a Wetland of International importance, there is really a bigger chance that this place experience above 60mm precipitation in a year, temperatures averaging from 23 – 26 degrees Celsius.</span>

7 0
3 years ago
El conductor de un tren que circula a 20 m/s ve un obstáculo en la vía y frena con una aceleración de 2 m/s2 hasta parar ¿cuánto
AlladinOne [14]
Velocidad inicial = 20 m/s
velocidad final = 0 m/s
aceleracion = -2 m/s^2

aceleracion = (cambio de velocidad)/(cambio de tiempo)
(cambio de tiempo)= (cambio de velocidad)/aceleracion
tiempo = (-20 m/s)/(-2 m/s^2)
= 10 segundos

x = (x(inicial)) + (v(inicial))(tiempo) + 1/2(aceleracion)(tiempo)^2
x(inicial) = 0
x = (20 m/s)(10 s) + 1/2 (-2m/s^2)(10 s)^2
x = 200 m - 100 m
x = 100 m (el espacio recorrido en los dos segundos)

espero que esto te ayude! buena suerte!
6 0
3 years ago
Other questions:
  • What is a wave period?
    10·1 answer
  • No work is done on an object when a force acting on the object does not move it. True False
    13·1 answer
  • How much force is needed to accelerate a 9760 kg airplane at a rate of 4.6 m/s^2
    13·1 answer
  • Kara Less was applying her makeup when she drove into South's busy parking lot last Friday morning. Unaware that Lisa Ford was s
    9·2 answers
  • A car is making a 50 mi trip. It travels the first half of the total distance 25.0 mi at 7.00 mph and the last half of the total
    6·1 answer
  • What is the station's orbital speed? the radius of earth is 6.37×106m, its mass is 5.98×1024kg.
    12·2 answers
  • There are very, very few times that scientists make estimations because they don’t have enough time or data to test all the poss
    11·1 answer
  • 1. Determine the magnitude of two equal but opposite charges if they attract one another with a force of 0.7N when at distance o
    7·1 answer
  • A rightward force of 460 N is applied to a 286-kg crate to accelerate it across the floor
    5·1 answer
  • A 15 kg dog jumps out a stationary sled which has a mass of 40 kg. If
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!