<span>54.8 g of MgI2 can be produced.
To solve this, you need to determine the molar mass of each reactant and the product. First, look up the atomic weights of iodine and magnesium
Atomic weight of Iodine = 126.90447
Atomic weight of Magnesium = 24.305
Molar mass of MgI2 = 24.305 + 2 * 126.90447 = 278.11394
Now determine how many moles of Iodine and Magnesium you have
moles of Iodine = 50.0 g / 126.90447 g/mol = 0.393997154 mole
moles of Magnesium = 5.15 / 24.305 g/mol = 0.211890557 mole
Since for every magnesium atom, you need 2 iodine atoms and since the number of moles of available iodine isn't at least 2 times the available moles of magnesium, iodine is the limiting reagent.
So figure out how many moles of magnesium will be consumed by the iodine
0.393997154 mole / 2 = 0.196998577 mole.
This means that you can make 0.196998577 moles of MgI2. Now simply multiply by the previously calculated molar mass of MgI2
0.196998577 mole * 278.11394 g/mole = 54.78805 g
Round the result to the correct number of significant figures.
54.78805 g = 54.8 g</span>
Answer:
Kelvin
Explanation:
As we know that

Where P is the pressure in atmospheric pressure
T is the temperature in Kelvin
R is the gas constant
V is the volume in liters

Substituting the given values in above equation, we get -

On rearranging, we get

Kelvin
Question: Baking a Cake Without Flour.
Hypothesis: I think that when I remove the flour from the standard cake recipe, I'll end up with a flat but tasty cake.
Procedure: I baked two cakes during my experiment. For my control, I baked a cake following a normal recipe. I used the Double Fudge Cake recipe on page 292 of the Betty Crocker Cookbook. For my experimental cake, I followed the same recipe but left out the flour. I first obtained a 2-quart mixing bowl.
Results: My control cake, which I cooked for 25 minutes, measured 4 cm high. Eight out of ten tasters that I picked at random from the class found it to be an acceptable dessert. After 25 minutes of baking, my experimental cake was 1.5 cm high and all ten tasters refused to eat it because it was burnt to a crisp.
What did I learn?/Conclusion: Since the experimental cake burned, my results did not support my hypothesis. I think that the cake burned because it had less mass, but cooked for the same amount of time. I propose that the baking time be shortened in subsequent trials.
-
I hope this helped :))
The hotter it gets, the faster molecules move, solid form is in low temperature, liquid in medium temperature and gas in high temperature.
Plants don't need sap. Plants produce sap and attract bugs.