Answer:
u= 187.61 ft/s
Explanation:
Given that
g= - 32 ft/s²
The maximum height ,h= 550 ft
Lets take the initial velocity = u ft/s
We know that
v²=u² + 2 g s
v=final speed ,u=initial speed ,s=height
When the object reach at the maximum height then the final speed of the object will become zero.
That is why
u²= 2 x 32 x 550
u²= 35200
u= 187.61 ft/s
That is why the initial speed will be 187.61 ft/s
<u>Answer:</u>
The ball is rolling at a speed of 0.02 meter per second.
<u>Step by step explanation:</u>
We are given that there is a 800 gram bowling ball rolling in a straight line. If its momentum is given to be 16 kg.m/sec, we are to find its velocity.
For this, we will use the formula of momentum.
<em>Momentum = mass × velocity</em>
16 = 800 × velocity
Velocity = 16/800 = 0.02 meter per second
Answer:
so how much heat is there at 0 C? That's zero. But for every degree above that you have 4.184 J. You take it from there. Remember q = mc*delta T.
We will have the following:
a. We determine the tension force of T2 as follows:
We know that the system must be at equilibrium on the horizontal axis:

So:

So, the value of T2 is approximately 1132.7 N.
b. We will determine the torques created by T1 and T2 as follows:
T1:

T2:

So the torques of T1 and T2 on the base are approximately 8343.5 N*m and 6737.6 N*m respectively.
c. The torques around that axis generated by the normal force and the weight are both 0 N*, since they are parallel to the axis.
d. We will determine the angular acceleration as follows:

So, the angular acceleration is approximately 1.25 radians/ s^2.
Answer:
16 s
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 40 Kg
Velocity (v) = 4 m/s
Power (P) = 20 W
Time (t) =?
Next, we shall determine the energy. This can be obtained as follow:
Mass (m) = 40 Kg
Velocity (v) = 4 m/s
Energy (E) =?
E = ½mv²
E = ½ × 40 × 4²
E = 20 × 16
E = 320 J
Finally, we shall determine the time. This can be obtained as follow:
Power (P) = 20 W
Energy (E) = 320 J
Time (t) =?
E = Pt
320 = 20 × t
Divide both side by 20
t = 320 / 20
t = 16 s
Thus, the time is 16 s