We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
Answer:
Boiling point of the solution is 100.78°C
Explanation:
This is about colligative properties.
First of all, we need to calculate molality from the freezing point depression.
ΔT = Kf . m . i
As the solute is nonelectrolyte, i = 1
0°C - (-2.79°C) = 1.86 °C/m . m . 1
2.79°C / 1.86 m/°C = 1.5 m
Now, we go to the boiling point elevation
ΔT = Kb . m . i
Final T° - 100°C = 0.52 °C/m . 1.5m . 1
Final T° = 0.52 °C/m . 1.5m . 1 + 100°C → 100.78°C
Answer:
2.6%
Explanation:
As, 1 ounce (oz) = 0.0625 pounds (lb)
Therefore, weight of baby at discharge = 7 lb,1 oz = 7+0.0625 lb = 7.0625 lb
Since, 1 oz = 0.0625 lb
⇒ 4 oz = 4×0.0625 = 0.25 lb
Therefore, weight of baby at birth = 7 lb,4 oz = 7+0.25 lb = 7.25 lb
The <u>amount of weight lost</u> is equal to the difference of weight of the baby at birth and discharge.
Therefore, <u>weight lost</u> = 7.25 lb - 7.0625 lb = <u>0.1875 lb</u>
Now, the <u>percentage of weight lost</u> by the baby is given by the amount of weight lost divided by the weight of the baby at birth.
Therefore, <u>the percentage of weight los</u>t = weight lost ÷ weight at birth = 0.1875 lb ÷ 7.25 lb × 100 = <u>2.6% </u>
The variables in the ideal gas constant has V as the unit of liters and T has the unit of Kelvin. Thus, option C is correct.
The gas constant in an ideal gas equation has been the value of the energy absorbed by 1 mole of an ideal gas at standard temperature and pressure.
The value of R has been dependent on the units of volume, temperature and pressure of the ideal gas.
The given value of R has been 0.0821 L.atm/mol.K
The unit in gas constant has been L (Liter) for volume (V).
The unit of pressure (P) has been atm.
The unit of temperature (T) has been Kelvin (K).
Thus the gas law constant used by student has V has the unit of liters and T has the unit of Kelvin. Thus, option C is correct.
For more information about the gas constant, refer to the link:
brainly.com/question/24814070
Answer:
- Volume is a physical property of an object.
- One unit of volume is the milliliter.
- Liquids and solids have constant volumes.
Explanation: