From our knowledge of periodic trends, the screening effect of the inner electrons outweigh the increase in nuclear charge causing the atomic radius to increase.
<h3>Periodic trends</h3>
The periodic trends are those properties that increase or decrease down the group or across the period. These periodic trends include;
- Ionization energy
- Electron affinity
- Atomic radius
- Ionic radius etc
As more shell are added down the group in group 14, the screening effect of the inner electrons outweigh the increase in nuclear charge causing the atomic radius to increase.
Learn more about periodic trends: brainly.com/question/12074167
Mass atomic of Ne=20.18 u
Therefore:
molar mass=20.18 g/1 mol
1 mole=6.022*10²³ particles (atoms or molecules)
Then: 6.022*10²³ atoms are contained in 20.18g
Now, We can solve this problem by the three rule.
6.022*10²³ atoms-------------------20.18 g
x------------------------------------------32 g
x=(6.022*10²³ atoms * 32 g)/20.18 g=9.55*10²³ atoms.
Answer: 9.55*10²³ Ne atoms are contained in 32 g of the element.
C + H2O -> H2 + CO
n(C) = 15.9/12 = 1.325 (mol)
=> n(H2) = 1.325 mol
We have:
PV = nRT
=> V = (nRT)/P
(R = 22.4/273 = 0.082)
V = (1.325 x 0.082 x 360)/1 = 39.114 (L)
Answer:
I2; I–I bond length = 266 pm
Explanation:
Bond length is inversely related to bond strength. The longer the bond length, the weaker the bond. The shorter the bond length the stronger the bond. A large bond distance implies that there is poor interaction between the atoms involved in the bond. A long bond distance or bond length may even indicate the absence of covalent interaction between the atoms involved.