The frequency of note C3 is 131 .
<u>Explanation:</u>
Frequency is the measure of repetition of same thing a certain number of times. So frequency is inversely proportional to the wavelength. As wavelength is distance between two successive crests or troughs in a sound wave.
And frequency is the completion of number of cycles in a given time in sound waves. The frequency and wavelength are inversely proportional to each other with velocity of sound being the proportionality constant.
Thus, here the speed of sound is given as 343 m/s, the wavelength of the note is also given as 2.62 m, then frequency will be as follows:
Thus,
So the frequency of note C3 is 131 .
Answer:
R = 2216m and The normal force of the seat on the pilot is 5008N
Explanation:
See attachment below please.
Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:
If the package is barely lifted, that means that T=m_2*g; then:
Solving the equation for a_mín, we have:
Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey:
For the package:
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package:
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:
Solving a, we have
We can then replace this value of a in one for the sums of force and find the tension T:
Answer:
I believe the answer is Plasma