1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
3 years ago
8

A bicyclist is traveling at +25m/s when he begins to decelerate at -4m/s2. How fast is he traveling after 5 seconds

Physics
1 answer:
kotegsom [21]3 years ago
7 0

Answer:

+5m/s

Explanation:

When doing the math we figure out that e is going to be slowing down at -4m/s² for 5 seconds. In total he is slowing down -20m/s which we take from the total speed of +25m/s to get his current new speed.

You might be interested in
Why do atoms do group 1 element lose electrons to form cations
Mrac [35]

Answer:

when a element of 1 group take part in reaction, its atom looses outer electron and form positively charged ions called Cation.

Explanation:

8 0
3 years ago
Time Intervals in Ice Ages
stepladder [879]
It started off with 68% less than it did at the peak, and later created a void and melted the remainder of the ice at about 92%
8 0
3 years ago
When the play button is pressed, a CD accelerates uniformly from rest to 450 rev/min in 3.0 revolutions. If the CD has a radius
Marina CMI [18]

To solve this problem it is necessary to apply the kinematic equations of angular motion.

Torque from the rotational movement is defined as

\tau = I\alpha

where

I = Moment of inertia \rightarrow \frac{1}{2}mr^2 For a disk

\alpha = Angular acceleration

The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

2 \alpha \theta = \omega_f^2-\omega_i^2

Where

\omega_{f,i} = Final and Initial Angular velocity

\alpha = Angular acceleration

\theta = Angular displacement

Our values are given as

\omega_i = 0 rad/s

\omega_f = 450rev/min (\frac{1min}{60s})(\frac{2\pi rad}{1rev})

\omega_f = 47.12rad/s

\theta = 3 rev (\frac{2\pi rad}{1rev}) \rightarrow 6\pi rad

r = 7cm = 7*10^{-2}m

m = 17g = 17*10^{-3}kg

Using the expression of angular acceleration we can find the to then find the torque, that is,

2\alpha\theta=\omega_f^2-\omega_i^2

\alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}

\alpha = \frac{47.12^2-0^2}{2*6\pi}

\alpha = 58.89rad/s^2

With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so

\tau = I\alpha

\tau = (\frac{1}{2}mr^2)\alpha

\tau = (\frac{1}{2}(17*10^{-3})(7*10^{-2})^2)(58.89)

\tau = 0.00245N\cdot m \approx 2.45*10^{-3}N\cdot m

Therefore the torque exerted on it is 2.45*10^{-3}N\cdot m

3 0
3 years ago
A jet stream generally diverges above a low-pressure (warm) center. However, at Earth's surface, air converges at a low-pressure
Gemiola [76]

The correct answer is that the surface winds will get stronger.

6 0
3 years ago
En la Tierra un volcán puede expulsar rocas verticalmente hasta una altura máxima H. A) ¿A qué altura (en términos de H) llegarí
Nonamiya [84]

A) 2.64 H

The maximum height that the expelled rock can reach can be found by using the equation:

v^2-u^2 = 2gd

where

v = 0 is the velocity at the maximum height

u is the initial velocity

g is the acceleration of gravity

d is the maximum height

Solving for d,

d=\frac{-u^2}{2g}

We see that the maximum heigth is inversely proportional to g. On the Earth,

d=H and g=g_e = -9.81 m/s^2

So we can write:

\frac{H}{H'}=\frac{g_m}{g_e}

where H' is the maximum height reached on Mars, and g_m = -3.71 m/s^2 is the acceleration of gravity on Mars. Solving for H',

H' = \frac{g_e}{g_m}H = \frac{-9.81}{3.71}H=2.64 H

B) 2.64T

The time after which the rock reaches the maximum height can be found by using

v=u+gt

where

v = 0 is the velocity at the maximum height

u is the initial velocity

Solving for t,

t=\frac{v-u}{g}

The total time of the motion is twice this value, so:

t=2\frac{v-u}{g}

So we see that it is inversely proportional to g.

On the Earth, t = T. So we can write:

\frac{T}{T'}=\frac{g_m}{g_E}

where T' is the total time of the motion on Mars. Solving for T',

T' = \frac{g_e}{g_m}T=\frac{-9.81}{-3.71}T=2.64T

4 0
3 years ago
Other questions:
  • Technician A says that the evacuation process will remove dirt and debris from the refrigerant system. Technician B says that th
    15·1 answer
  • Someone presents you with a machine they have invented and tells you that the machine makes you stronger than you really are bec
    5·1 answer
  • When we talk about how a Ferrari obtains a top speed of 349 km/h, are we referring to average speed or instantaneous? How do you
    7·2 answers
  • A metal wire of resistance R is cut into two pieces of equal length. The two pieces are connected together side by side. Part A
    11·1 answer
  • I NEED HELP SOLVING THIS!!!!!!!!!!!!
    8·1 answer
  • A quadraphonic car stereo operates on electric current provided by the car's 12V battery and is connected in series. Each channe
    14·1 answer
  • A disk has 128 tracks of 32 sectors each, on each surface of eight platters. The disk spins at 3600 RPM and takes 15 ms to move
    9·1 answer
  • Which statement is correct about how the temperature of an object changes?
    13·1 answer
  • EASY BRAINLIEST!!URGENT PLEASE HELP.
    8·1 answer
  • Seeds are often found on which part of a gymnosperm?<br><br> branch<br> leaf<br> cone<br> stem
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!