1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
3 years ago
5

If object A has more mass than object B, what will object A need to accelerate at the same rate as object B?

Physics
1 answer:
Leni [432]3 years ago
3 0

Answer:

More force

Explanation:

Object A has more mass than object B

  For object A to accelerate at the same rate as object B, it will need more force.

According to Newton's second law of motion "the net force on a body is the product of its mass and acceleration".

  Net force  = mass x acceleration

Now, if a body has more mass and needs to accelerate at the same rate as another one with a lower mass, the force on it must be increased.

You might be interested in
In what way do pigments act differently from light?
Karo-lina-s [1.5K]
A. Because they reflect their color and absorb all the others
6 0
4 years ago
Read 2 more answers
Resonance occurs when an object vibrating at or near the resonant frequency of a second object to vibrate. What form of waves ar
Ivanshal [37]

Answer:

Resonance depends on objects, this may happen for example when you play guitar in a given room, you may find that for some notes the walls or some object vibrate more than for others. This is because those notes are near the frequency of resonance of the walls.

So waves involved are waves that can move or affect objects (in this case the pressure waves of the sound, and the waves that are moving the wall).

this means that the waves are mechanic waves.

Now, in electromagnetics, you also can find resonance frequencies for electromagnetic waves trapped in things called cavities, but this is a different topic.

8 0
3 years ago
What is the work energy transfer equation?
rosijanka [135]

Answer:

The equation used to calculate the work done is: work done = force × distance. W = F × d. This is when: work done (W) is measured in joules (J)

8 0
3 years ago
Read 2 more answers
Each value in nature has a number part, called its____<br> and a dimension, or unit
saul85 [17]

Answer:

<u>Magnitude</u>

Explanation:

Each value in nature has a number part, called its magnitude and a dimension called its unit.

For example,

The length of an object is 10 cm. It means that 10 shows the magnitude of length and cm shows its unit.

7 0
3 years ago
You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov
Marina CMI [18]

Answer:

<em>a. The frequency with which the waves strike the hill is 242.61 Hz</em>

<em>b. The frequency of the reflected sound wave is 254.23 Hz</em>

<em>c. The beat frequency produced by the direct and reflected sound is  </em>

<em>    11.62 Hz</em>

Explanation:

Part A

The car is the source of our sound, and the frequency of the sound wave it emits is given as 231 Hz. The speed of sound given can be used to determine the other frequencies, as expressed below;

f_{1} = f[\frac{v_{s} }{v_{s} -v} ] ..............................1

where f_{1} is the frequency of the wave as it strikes the hill;

f is the frequency of the produced by the horn of the car = 231 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 36.4 mph

Converting the speed of the car from mph to m/s we have ;

hint (1 mile = 1609 m, 1 hr = 3600 secs)

v = 36.4 mph *\frac{1609 m}{1 mile} *\frac{1 hr}{3600 secs}

v = 16.27 m/s

Substituting into equation 1 we have

f_{1} =  231 Hz (\frac{340 m/s}{340 m/s - 16.27 m/s})

f_{1}  = 242.61 Hz.

Therefore, the frequency which the wave strikes the hill is 242.61 Hz.

Part B

At this point, the hill is the stationary point while the driver is the observer moving towards the hill that is stationary. The frequency of the sound waves reflecting the driver can be obtained using equation 2;

f_{2} = f_{1} [\frac{v_{s}+v }{v_{s} } ]

where f_{2} is the frequency of the reflected sound;

f_{1}  is the frequency which the wave strikes the hill = 242.61 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 16.27 m/s.

Substituting our values into equation 1 we have;

f_{2} = 242.61 Hz [\frac{340 m/s+16.27 m/s }{340 m/s } ]

f_{2}  = 254.23 Hz.

Therefore, the frequency of the reflected sound is 254.23 Hz.

Part C

The beat frequency is the change in frequency between the frequency of the direct sound  and the reflected sound. This can be obtained as follows;

Δf = f_{2} -  f_{1}  

The parameters as specified in Part A and B;

Δf = 254.23 Hz - 242.61 Hz

Δf  = 11.62 Hz

Therefore the beat frequency produced by the direct and reflected sound is 11.62 Hz

3 0
3 years ago
Other questions:
  • A bee loaded with pollen flies in a circular path at a constant speed of 3.20 m/s. If the mass of the bee is 133 mg and the radi
    5·2 answers
  • Can someone please explain what inertia is?
    10·2 answers
  • Why do you think that some asteroids tumble end over end through space while other asteroids rotate around their axis?
    13·1 answer
  • Scientific notation: Convert 7.1 x 10-3 to decimal notation.​
    10·1 answer
  • An electron is trapped in an infinite square-well potential of width 0.6 nm. If the electron is initially in the n = 4 state, wh
    6·1 answer
  • The full range of frequencies of electromagnetic radiation is called
    12·1 answer
  • Which could describe the motion of any object
    6·1 answer
  • Help me please pleasee
    9·1 answer
  • A sprinter practicing for the 200-m dash accelerates uniformly from rest at A and reaches a top speed of 35 km/h at the 67-m mar
    10·1 answer
  • Which of the following is correct concerning the uncontrolled burn phase?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!