Explanation:
It is given that,
Magnetic field, B = 0.15 T
Charge on a proton, 
Mass of a proton, 
The cyclotron frequency is given by :


f = 2286785.40 Hz
or


Hence, this is the required solution.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s
Answer:
0.6 m
Explanation:
When a spring is compressed it stores potential energy. This energy is:
Ep = 1/2 * k * x^2
Being x the distance it compressed/stretched.
When the spring bounces the ice cube back it will transfer that energy to the cube, it will raise up the slope, reaching a high point where it will have a speed of zero and a potential energy equal to what the spring gave it.
The potential energy of the ice cube is:
Ep = m * g * h
This is vertical height and is related to the distance up the slope by:
sin(a) = h/d
h = sin(a) * d
Replacing:
Ep = m * g * sin(a) * d
Equating both potential energies:
1/2 * k * x^2 = m * g * sin(a) * d
d = (1/2 * k * x^2) / (m * g * sin(a))
d= (1/2 * 25 * 0.1^2) / (0.05 * 9.81 * sin(25)) = 0.6 m
<span>AnalStage. </span>According to Freud, a<span>dults fixated in this area could feel constantly out
of control or could need to be in control all the time. Pleasure focus
is on the anus, which occurs when a child learns to control bladder and bowel
movements. Fixation in this area can be caused from struggles during potty
training.</span>