Answer:
C. Amount of 3 dimensional space the object occupies
Explanation:
Single dimension is a laminar
Amount of 2 dimension is area
Amount of 4 dimension is negligible

They share the same number or protons
Answer:
14
Explanation:
Atomic mass = protons + neutrons
6 + 8 = 14
Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
(C) 0.1 mole of NaCl dissolved in 1,000. mL of water
<u>Explanation:</u>
The conductivity of 0.1 mole of NaCl dissolved in 1000 mL of water will be greatest as the number of ions in 0.1 mole of NaCl will be more than 0.001, 0.05 and 0.005 moles of NaCl. Greater the number of ions in the solution, greater will be the conductivity. Specific Conductivity decreases with a decrease in concentration. Since the number of ions per unit volume that carry current in a solution decrease on dilution. Hence, concentration and conductivity are directly proportional to each other.