Answer:
Mass of 1 mole of copper is 63.83 g.
0.03916 moles of copper atoms have a mass equal to the 2.5 grams of copper penny.
Explanation:
Mass of 1 copper atom,m =
Mass of 1 mole of copper :
=
Mass of 1 mole of copper = 63.83 g
Mass of copper penny = 2.5 g
Atomic mass of copper = 63.83 g/mol
Moles of copper in 2.5 g of copper penny:
0.03916 moles of copper atoms have a mass equal to the 2.5 grams of copper penny.
Answer: I think the answer is 3.) Krypton or Argon.
Explanation:
Answer:
Celsius is currently a derived unit for temperature in the SI system, kelvin being the base unit. ... The two main reference points of the Celsius scale were the freezing point of water (or melting point of ice) being defined as 0 °C and the boiling point of water being 100 °C.
Explanation:
Hope it helps
The reaction between calcium carbonate and hydrochloric acid can be expressed through the chemical reaction,
CaCO3 + 2HCl --> CaCl2 + H2O + CO2
The molecular weight of calcium carbonate is 100 g/mol while that of hydrochloric acid is 36.45. The equation above depicts that 100 g of calcium carbonate can be dissolved in 72.9 g of hydrochloric acid.
x = (4 g HCl)(100 g CaCO3 / 72.9 HCl)
x = 5.49 g
Answer: 5.49 g
Answer:
The molar concentration of Cu²⁺ in the initial solution is 6.964x10⁻⁴ M.
Explanation:
The first step to solving this problem is calculating the number of moles of Cu(NO₃)₂ added to the solution:
n = 1.375x10⁻⁵ mol
The second step is relating the number of moles to the signal. We know the the n calculated before is equivalent to a signal increase of 19.9 units (45.1-25.2):
1.375x10⁻⁵ mol _________ 19.9 units
x _________ 25.2 units
x = 1.741x10⁻⁵mol
Finally, we can calculate the Cu²⁺ concentration :
C = 1.741x10⁻⁵mol / 0.025 L
C = 6.964x10⁻⁴ M