The answer is: A) Na3PO4 + 3KOH → 3NaOH + K3PO4, because K retains the same charge throughout the reaction.
This chemical reaction is double displacement reaction - cations (K⁺ and Na⁺) and anions (PO₄³⁻⁻ and OH⁻) of the two reactants switch places and form two new compounds.
Na₃PO₄ is sodium phosphate.
KOH is potassium hydroxide.
NaOH is sodium hydroxide.
K₃PO₄ is potassium phosphate.
According to the mass conservation law, there are same number of atoms on both side of balanced chemical reaction.
By Using relative and radiometric dating methods hope this helps!!
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.
Answer:
[HOCH₂CH₂OH] = 24.1 m
Explanation:
Ethylene glycol → HOCH₂CH₂OH
60% by mass means that 60 g of ethylene glycol are contained in 100 g of solution.
Solution mass = Solute mass + Solvent mass
100 g = 60 g + Solvent mass
Solvent mass = 40 g
Molality are the moles of solute contained in 1kg of solvent.
We determine the moles of solute → 60 g . 1mol/62 g = 0.967 moles
We convert the mass of solvent from g to kg → 40 g . 1kg/1000 g = 0.04 kg
Molality → 0.967 mol / 0.04 kg = 24.1 m