<u>Answer:</u>
<em>The energy to turn the ice into water:</em>
- The energy that is required to change the state of ice into a liquid is obtained in the form of heat energy from the ambient temperature of the warm room.
- Once this heat energy is absorbed, the individual molecules of ice gain kinetic energy and start vibrating faster.
- Yet, the temperature of the ice remains constant until the ice reaches its melting point because this energy is first utilised to break all the bonds of the lattice structure of the ice.
- After all the bonds are broken and all of the ice has changed into water, if more heat is provided again, then the temperature of the water will increase.
This can be solved using Dalton's Law of Partial pressures. This law states that the total pressure exerted by a gas mixture is equal to the sum of the partial pressure of each gas in the mixture as if it exist alone in a container. In order to solve, we need the partial pressures of the gases given. Calculations are as follows:
P = P1 + P2 + P3
P = (82.0575 atm.cm^3/mol.K)( 298.15 K)/1.50 x 10^3 cm^3) x (<span>0.158 mole + 0.09 mol + 0.044 mol) = 4.76 atm</span>
The mixture of rock particle sand humus is called the soil.
If soil contains greater proportion of big particles it is called sandy soil. If the proportion of fine particles is relatively higher, then it is called clayey soil. If the amount of large and fine particles is about the same, then the soil is called loamy.
If the graph has no trend which means almost constant, it indicates that the dependent variables will not change when the independent variables change.