After three half lives have passed, there would be only 12.5 percent of the original amount of a radioactive parent isotope that will remain. Half life is the time needed for a certain amount of a substance to be half its initial amount. It is a common term used in nuclear chemistry describing how fast radioactive substances undergo decay. One half life would correspond to only 50% would be left. Two half lives would be 25% only of the original value. Three half lives would be 12.5%. Four half lives would be 6.25% of the initial value. So on and so forth.
Answer:
PART A: The LDF occurs between all molecules. Dispersion forces result from shifting electron clouds, which cause weak, temporary dipole.
PART B: Dipole dipole operates only between polar molecules. This is when two polar molecules get near each other and the positively charged portion of the molecule is attracted to the negatively charged portion of another molecule.
PART C: Dipole dipole and in some cases hydrogen bonding operate between the hydrogen atom of a polar bond and a nearby small electronegative atom. Only if the atom bonded to it were F, O or N it would be hydrogen bonding. Otherwise it is dipole dipole.
Answer: I & III
Explanation: Solutes are the substances which are minimum in quantity and which is required to dissolve in the solvent (which is larger in quantity) in order to make a solution.
In the asked question, it is given that the water is the solvent and from the given solutes we have to pick which would make an aqueous solution with the highest concentration of solute possible.
Thus the most appropriate answers could be the Ammonia and hexanol which can make the highest possible concentration of solute as ammonia is the gas which is highly soluble in water and hexanol is an alcohol which has an affinity for water. Thus the correct option is I & III
Answer:
It is equal to the number of moles of acid that reacted. When Oxalic acid is your limiting reactant it is the # of moles of oxalic acid used. When NaOH is your limiting reactant it is equal to the number of moles of NaOH used.
Answer:
I didn't do the observation so I can't help sorry