Answer:

Explanation:
Given
Airline flying at 34,000 ft.
Cabin pressurized to an altitude 8,000 ft.
We know that at standard condition ,density of air

We know that pressure difference
ΔP=ρ g ΔZ
Here ΔZ=34,000-8,000 ft
ΔZ=26,000 ft

ΔP=0.074 x 32.2 x 26,000

So pressure difference will be
.
Three families live in the same apartment building. They decided to share a giant 220-ounce container.
57.5 m/s
I did 2.3/0.04
I’m not sure if it’s correct though
Answer:
The compressive stress of aplying a force of 708 kN in a 81 mm diamter cylindrical component is 0.137 kN/mm^2 or 137465051 Pa (= 137.5 MPa)
Explanation:
The compressive stress in a cylindrical component can be calculated aby dividing the compressive force F to the cross sectional area A:
fc= F/A
If the stress is wanted in Pascals (Pa), F and A must be in Newtons and square meters respectively.
For acylindrical component the cross sectional area A is:
A=πR^
If the diameter of the component is 81 mm, the radius is the half:
R=81mm /2 = 40.5 mm
Then A result:
A= 3.14 * (40.5 mm)^2 = 5150.4 mm^2
In square meters:
A= 3.14 * (0.0405 m)^2 = 0.005150 m^2
Replacing 708 kN to the force:
fc= 708 kN / 5150.4 mm^2 = 0.137 kN/mm^2
Using the force in Newtons:
F= 70800 N
Finally the compressive stress in Pa is:
fc= 708000 / 0.005150 m^2 = 137465051 Pa = 137 MPa
Explanation:
https://www.chegg.com/homework-help/questions-and-answers/iron-core-wish-design-transformer-part-dc-power-supply-moderately-high-current-rating-volt-q53186459?trackid=83dbc34cec2e&strackid=3efc9f324415