<u>Answer:</u> The rate law for the reaction is ![\text{Rate}=k[NO_3][CO]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO_3%5D%5BCO%5D)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
In a mechanism of the reaction, the slow step in the mechanism determines the rate of the reaction.
For the given chemical reaction:

The intermediate reaction of the mechanism follows:
Step 1: 
Step 2: 
As, step 2 is the slow step. It is the rate determining step
Rate law for the reaction follows:
![\text{Rate}=k[NO_3][CO]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO_3%5D%5BCO%5D)
Hence, the rate law for the reaction is written above.
Answer:
Elements only contain one type of atoms while compounds contain two or more types of atoms.
Explanation:
An example of an element is sodium --> Na (only Na atoms)
An example of a compound can be water --> H2O (contain H and O atoms)
*But the particles within a compound are all the same.
Intranasal absorption can cause permanent loss of sense of small
Answer:
Noble Gases B
Explanation:
The noble gases are the chemical elements in group 18 of the periodic table. They are the most stable due to having the maximum number of valence electrons their outer shell can hold. Therefore, they rarely react with other elements since they are already stable.