Answer:
1. 0.97 V
2. 
Explanation:
In this case, we can start with the <u>half-reactions</u>:


With this in mind we can <u>add the electrons</u>:
<u>Reduction</u>
<u>Oxidation</u>
The reduction potential values for each half-reaction are:
- 0.69 V
-1.66 V
In the aluminum half-reaction, we have an oxidation reaction, therefore we have to <u>flip</u> the reduction potential value:
+1.66 V
Finally, to calculate the overall potential we have to <u>add</u> the two values:
1.66 V - 0.69 V = <u>0.97 V</u>
For the second question, we have to keep in mind that in the cell notation we put the anode (the oxidation half-reaction) in the left and the cathode (the reduction half-reaction) in the right. Additionally, we have to use "//" for the salt bridge, therefore:

I hope it helps!
Answer:
When dissolved in water, acids donate hydrogen ions (H+). Hydrogen ions are hydrogen atoms that have lost an electron and now have just a proton, giving them a positive electrical charge. Bases, on the other hand, mixed with water yield hydroxide ions (OH-).
i believe the answer is success of a policy. if this was correct please mark brainliest and lmk if you have any more questions x
Answer:
full moon
Explanation:
....ur welcome..............
Use the molar mass of ammonia to change the grams to moles and then use mole-mole ratio
100. g NH3 (1 mol NH3/ 17.04 g) (3 mol H2/ 2 mol NH)= 8.80 moles H2