Answer:
The 10 rules of badminton are as follows:
1. A game starts with a coin toss. Whoever wins the toss gets to decide whether they would serve or receive first OR what side of the court they want to be on. The side losing the toss shall then exercise the remaining choice.
2. At no time during the game should the player touch the net, with his racquet or his body.
3. The shuttlecock should not be carried on or come to rest on the racquet.
4. A player should not reach over the net to hit the shuttlecock.
5. A serve must carry cross court (diagonally) to be valid.
6. During the serve, a player should not touch any of the lines of the court, until the server strikes the shuttlecock. During the serve the shuttlecock should always be hit from below the waist.
7. A point is added to a player's score as and when he wins a rally.
8. A player wins a rally when he strikes the shuttlecock and it touches the floor of the opponent's side of the court or when the opponent commits a fault. The most common type of fault is when a player fails to hit the shuttlecock over the net or it lands outside the boundary of the court.
9. Each side can strike the shuttlecock only once before it passes over the net. Once hit, a player can't strike the shuttlecock in a new movement or shot.
10. The shuttlecock hitting the ceiling, is counted as a fault.
Explanation:
Answer: If you make certain decisions like changing your diet (for good or worse) increasing physical activity, or playing more video games, things like these can affect your wellness and health for the worse or better.
Answer:

Explanation:
The artificial gravity generated by the rotating space station is the same centripetal acceleration due to the rotational motion of the station, which is given by:

Here, r is the radius and v is the tangential speed, which is given by:

Here
is the angular velocity, we replace (2) in (1):

Recall that
.
Solving for
:

Answer:
Stars emit colors of many different wavelengths, but the wavelength of light where a star's emission is concentrated is related to the star's temperature - the hotter the star, the more blue it is; the cooler the star, the more red it is
A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find
