Answer:
50.2 m
Explanation:
We can solve the problem by using the following SUVAT equation for the vertical position of the rock:

where
h is the initial height (the depth of the canyon), taking the bottom of the canyon as reference position
u = 0 is the initial velocity of the rock
t is the time
is the acceleration of gravity
When the rock reaches the bottom, t = 3.2 s and y = 0. Substituting these numbers and solving for h, we find the depth of the canyon:

The very first option is correct, as any other answer is either incorrect in terms of optics or does not stop you from seeing the apple.
Answer:
yesssssssssssssssssssssssssssssssssssss
Classically and Newtonianly, it's the sum of the chemical energy if any,
the electrical energy if any, the thermal energy if any, and the mechanical
energy consisting of potential and kinetic energy if any.
The mechanical energy, consisting of potential and kinetic energy if any, is
0.001 x [ (acceleration of gravity x height) + (1/2) (speed)² ] .
But I've got a sneaky hunch that you're not talking about any of these.
You want to know how much [ <em><u>mc</u>² </em>] there is in 1 gram of mass. No prob.
E = m c² = (0.001) x (3 x 10⁸)² = <em>9 x 10¹³ joules</em>
That's the energy that a 1,000-watt toaster uses
in <em>2,852 years</em> of continuous toasting.