1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
diamong [38]
3 years ago
14

How many laws of Newton and who​

Physics
2 answers:
nasty-shy [4]3 years ago
5 0

Answer:

The three laws of motion were first compiled by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687. Newton used them to explain and investigate the motion of many physical objects and systems

Flura [38]3 years ago
3 0

Answer:

three laws

Explanation:

there are three laws of motion created by isaac newton. the first one is an object at rest stays at rest and an object in motion stays in motion until acted upon by an external force. the second one is f=ma and the third is for every action there is an equal but opposite reaction.hope this helps

You might be interested in
A 20-N force acts on an object with a mass of 2.0kg. what is the objects acceleration?
ale4655 [162]

Answer:

10 m/s^2

Explanation:

Equation: F = ma.

a = acceleration

m = mass

F = force

Because we are trying to find acceleration instead of force we want to rearrange the equation to solve for a which is F/m = a.

F = 20

m = 2

a = ?

a = F/m

a = 20/2

a = 10 m/s^2

7 0
3 years ago
Read 2 more answers
Consider two diffraction gratings with the same slit separation. The only difference between the two gratings is that one gratin
kobusy [5.1K]

Answer:

True The grid with more slits gives more angle separation increases

True. The grating with 10 slits produces better-defined (narrower) peaks

Explanation:

Such a system can be seen as a diffraction network in this case with different number of lines per unit length, the expression for the constructive interference of a diffraction network is

      d sin θ = m λ

where d is the distance between slits or lines, m the order of diffraction and λ the wavelength.

For network with 5 slits

      d = 1/5 = 0.2

For the network with 10 slits

      d = 1/10 = 0.1

let's calculate the separation (teat) for each one

      θ = sin⁻¹ (m λ / d)

for 5 slits

     θ₅ = sin⁻¹ (m λ 5)

for 10 slits

     θ₁₀ = sin⁻¹ (m λ 10)

we can appreciate that for more slits the angle increases

the intensity of a series of slits is

       I = I₀ sin²2 (N d/2) / sin² d/2)

when there are more slits (N) the peaks have greater intensity and are more acute (half width decreases)

let's analyze the claims

False

True The grid with more slits gives more angle separation increases

False

True The expression for the intensity of the diffraction peaks the intensity of the peaks increases with the number of slits as well as their spectral width decreases

False

5 0
3 years ago
g Two mirrors are touching so they have an angle of 35.4 degrees with one another. A light ray is incident on the first at an an
Mamont248 [21]

Answer:

add the angles

HOPE you understand

5 0
3 years ago
A point charge q is located at the center of a spherical shell of radius a that has a charge −q uniformly distributed on its sur
muminat

Answer:

a) E = 0

b) E =  \dfrac{k_e \cdot q}{ r^2 }

Explanation:

The electric field for all points outside the spherical shell is given as follows;

a) \phi_E = \oint E \cdot  dA =  \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}

From which we have;

E \cdot  A =  \dfrac{{\Sigma Q}}{\varepsilon _{0}} = \dfrac{+q + (-q)}{\varepsilon _{0}}  = \dfrac{0}{\varepsilon _{0}} = 0

E = 0/A = 0

E = 0

b) \phi_E = \oint E \cdot  dA =  \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}

E \cdot  A  = \dfrac{+q }{\varepsilon _{0}}

E  = \dfrac{+q }{\varepsilon _{0} \cdot A} = \dfrac{+q }{\varepsilon _{0} \cdot 4 \cdot \pi \cdot r^2}

By Gauss theorem, we have;

E\oint dS =  \dfrac{q}{\varepsilon _{0}}

Therefore, we get;

E \cdot (4 \cdot \pi \cdot r^2) =  \dfrac{q}{\varepsilon _{0}}

The electrical field outside the spherical shell

E =  \dfrac{q}{\varepsilon _{0} \cdot (4 \cdot \pi \cdot r^2) }= \dfrac{q}{4 \cdot \pi \cdot \varepsilon _{0} \cdot r^2 }=  \dfrac{q}{(4 \cdot \pi \cdot \varepsilon _{0} )\cdot r^2 }

k_e=  \dfrac{1}{(4 \cdot \pi \cdot \varepsilon _{0} ) }

Therefore, we have;

E =  \dfrac{k_e \cdot q}{ r^2 }

5 0
3 years ago
What keeps both the cars pressed down on the road? ​
mihalych1998 [28]

Answer:

Gravity

Explanation:

5 0
3 years ago
Other questions:
  • A truck travels up a hill with a 7.5◦incline.The truck has a constant speed of 24 m/s.What is the horizontal component of thetru
    10·1 answer
  • The flywheel of a steam engine runs with a constant angular velocity of 150 rev/min. When steam is shut off, the friction of the
    7·1 answer
  • Our Sun emits most of its radiation at a wavelength of 550 nm. If a star were 3.50 times hotter than our Sun, it would emit most
    12·1 answer
  • WHAT ARE THE NECESSARY CONDITIONS TO CREATE A WAVE?
    7·1 answer
  • 12. A boy of mass 50 kg running 5m/s jumps on to a 20kg trolley
    15·1 answer
  • Jack observed his coworker Jane crying when she was called into the boss's office. Jack thinks that crying at work is a sign of
    14·2 answers
  • When did rock layer H form relative to the other rock layers? In your answers, compare layer H to as many rock layers as you can
    6·2 answers
  • What property of objects is best measured by their capacitance?
    11·1 answer
  • Waves can transfer energy through
    8·1 answer
  • Help me with the following problem
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!