1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
2 years ago
11

A star such as the Sun starts out as a protostar with a diameter a hundred times larger than its diameter during its main-sequen

ce lifetime. Accordingly, the protostar's temperature is much less than its main-sequence temperature. Assume that while the Sun was a protostar it had a diameter 95.00 times that of the present-day Sun. How many times greater was the protostar's surface area
Physics
1 answer:
Elan Coil [88]2 years ago
8 0

The protostar's surface area was 1.1  times greater.

<h3>Surface area of the star</h3>

The surface of the star can be assumed be circular and the surface area can determined as follows;

  • initial diameter = 100d
  • final diameter = 95d

Area = πr²

Area = \frac{\pi d^2}{4} \\\\Area = \frac{(100d)^2}{(95d)^2} \\\\

Surface area = 1.1 times greater

Thus, the protostar's surface area was 1.1  times greater.

Learn more about protostars here:  brainly.com/question/891408

You might be interested in
if a car that is 100 feet in front of you on route 70 west slams on the brakes while you are traveling 65 miles per hour (95 fee
fenix001 [56]

Answer:

t = 1.05 s

Explanation:

Given,

The distance between your vehicle and car, 100 ft

The constant speed of your vehicle, u = 95 ft/s

Since, the velocity is constant, a =0

If the car stopped suddenly, time left for you to hit the brake, t = ?

Using the second equation of motion,

                           S = ut + ½ at²

Substituting the given values in the equation

                           100 = 95 x t

                             t = 100/95

                               = 1.05 s

Hence, the time left for you to hit the brakes and stop before rear ending them, t = 1.05 s

5 0
2 years ago
While standing at the edge of the roof of a building, you throw a stone upward with an initial speed of 5.65 m/s. The stone subs
xxTIMURxx [149]

Answer:

1. 20.54m/s

2. 1.52s

Explanation:

QUESTION 1:

The speed the stone impact the ground is the final speed/velocity, which can be calculated using the formula:

v² = u² + 2as

Where;

v = final velocity (m/s)

u = initial velocity (m/s)

a = acceleration due to gravity (m/s²)

s = distance (m)

From the provided information, u = 5.65m/s, v = ?, s = 19.9m, a = 9.8m/s²

v² = 5.65² + 2 (9.8 × 19.9)

v² = 31.9225 + 2 (195.02)

v² = 31.9225 + 390.04

v² = 421.9625

v = √421.9625

v = 20.5417

v = 20.54m/s

QUESTION 2:

Using v = u + at

Where v = final velocity (m/s) = 20.54m/s

t = time (s)

u = initial velocity (m/s) = 5.65m/s

a = acceleration due to gravity (m/s²)

v = u + at

20.54 = 5.65 + 9.8t

20.54 - 5.65 = 9.8t

14.89 = 9.8t

t = 14.89/9.8

t = 1.519

t = 1.52s

3 0
3 years ago
After an incandescent lamp is turned on, the temperature of its filament rapidly increases from room temperature to its operatin
IrinaVladis [17]

Answer: (1) The resistance increases and the current decreases.

Explanation:  

When the temperature of the filament increases, the vibrational energy of the constituent atoms increases which leads to increase in inter-atomic collision. Thus, the resistance would increase. The increases in resistance would obstruct the flow of charges more leading to decrease in the value of the current.

Hence, when the temperature of the filament increase, the resistance increases and current decreases.

6 0
3 years ago
Read 2 more answers
g A 1.5-kg mass attached to spring with a force constant of 20.0 N/m oscillates on a horizontal, frictionless track. At t = 0, t
jok3333 [9.3K]

Answer:

(a)    f = 0.58Hz

(b)    vmax = 0.364m/s

(c)    amax = 1.32m/s^2

(d)    E = 0.1J

(e)    x(t)=0.1m*cos(2π(0.58s^{-1})t)

Explanation:

(a) The frequency of the oscillation, in a spring-mass system, is calculated by using the following formula:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}            (1)

k: spring constant = 20.0N/m

m: mass = 1.5kg

you replace the values of m and k for getting f:

f=\frac{1}{2\pi}\sqrt{\frac{20.0N/m}{1.5kg}}=0.58s^{-1}=0.58Hz

The frequency of the oscillation is 0.58Hz

(b) The maximum speed is given by the following relation:

v_{max}=\omega A=2\pi f A      (2)

A: amplitude of the oscillations = 10.0cm = 0.10m

v_{max}=2\pi (0.58s^{-1})(0.10m)=0.364\frac{m}{s}

The maximum speed of the mass is 0.364 m/s.

The maximum speed occurs when the mass passes trough the equilibrium point of the oscillation.

(c) The maximum acceleration is given by the following formula:

a_{max}=\omega^2A=(2\pi f)^2 A

a_{max}=(2\pi (0.58s^{-1}))(0.10m)=1.32\frac{m}{s^2}

The maximum acceleration is 1.32 m/s^2

The maximum acceleration occurs where the elastic force is a maximum, that is, where the mass is at the maximum distance from the equilibrium point, that is, the acceleration.

(d) The total energy of the system is calculated with the maximum potential elastic energy:

E=\frac{1}{2}kA^2=\frac{1}{2}(20.0N/m)(0.10m)^2=0.1J

The total energy is 0.1J

(e) The displacement as a function of time is:

x(t)=Acos(\omega t)=Acos(2\pi ft)\\\\x(t)=0.1m\ cos(2\pi(0.58s^{-1})t)

6 0
2 years ago
A policeman is chasing a criminal across a rooftop at 10 m/s. He decides to jump to the next building which is 2 meters across f
Alexus [3.1K]
At 10 m/s, it will take
  (2 m)/(10 m/s) = 0.2 s
to bridge the gap.

_____
However, it will take an additional 0.514 seconds (0.714 s total) for the policeman to land on the building below. The answer depends on the meaning of the question.

3 0
3 years ago
Other questions:
  • Two tuning forks produce sounds of wavelengths 3.4 meters and 3.3 meters. Given that the speed of sound is 340 m/s, approximatel
    10·1 answer
  • Calculate the acceleration of a galloping horse going from 2 m/s to 12 m/s in 2 seconds.
    5·1 answer
  • One speaker generates sound waves with amplitude A.
    10·1 answer
  • a body of mass 1.5kg, traveling along the positive x axis with speed 4.5m/s,collides with another body B of mass 3.2kg which,ini
    7·1 answer
  • .<br> A .63 kg ball is moving at 4.3m/s. What is the momentum of the ball?
    8·1 answer
  • A 117 kg horizontal platform is a uniform disk of radius 1.61 m and can rotate about the vertical axis through its center. A 62.
    12·1 answer
  • If a battery causes a wire to carry a current of 4 Amps how many coulombs of charge flow past any point in the wire in 3 seconds
    14·1 answer
  • A 0.40 kg bead slides on a straight frictionless wire with a velocity of 3.50 cm/s to the right. The
    8·1 answer
  • A race car accelerates at a constant rate from 20 m/s to 60 m/s in a time of 2 seconds. What is the car’s acceleration?
    9·1 answer
  • A hollow cylinder is given a velocity of 5.3 m/s and rolls up an incline to a height of 2.87 m. If a hollow sphere of the same m
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!