Answer:
Step-by-step explanation:
Problem One (left panel)
<em><u>Question A</u></em>
- The y intercept happens when x = 0
- That being said, the y intercept is 50. It was moving when the timing began.
<em><u>Question B</u></em>
The rate of change = (56 - 52)/(3 - 1) = 4/2 = 2 miles / hour^2 (you have a slight acceleration.
<em><u>Question C</u></em>
- 60 = a + (n-1)d
- 60 = 50 + (n - 1)*2
- 10/2 = (n - 1)*2/2
- 5 = n - 1
- 6 = n
The way I have done it the domain is n from 1 to 6
Question 2 (Right Panel)
<em><u>Question A</u></em>
The equation for the table is f(x) = 3x - 3 which was derived simply by putting all three points into y = ax + b and solving.
- f(0) = ax + b
- -3 = a*0) + b
- b = - 3
- So far what you have is
- f(x) = ax - 3
- f(-1) = a*(-1) - 3 but we know (f(-1)) = -6
- - 6 = a(-1) - 3 add 3 to both sides
- -6 +3 = a(-1) -3 + 3
- -3 = a*(-1) Divide by - 1
- a = 3
- f(x) = 3x - 3 Answer for f(x)
- The slope of f(x) = the coefficient in front of the x
- f(x) has a slope of 3
- g(x) has a slope of 4
<em><u>Part B</u></em>
- f(x) has a y intercept of - 3
- g(x) has a y intercept of -5
- f(x) has the greater y intercept.
- -3 > - 5
Answer:
yes
Step-by-step explanation:
Answer:
The first term of the geometric series is 1
Step-by-step explanation:
In this question, we are tasked with calculating the first term of a geometric series, given the common ratio, and the sum of the first 8 terms.
Mathematically, the sum of terms in a geometric series can be calculated as;
S = a(r^n-1)/( r-1)
where a is the first term that we are looking for
r is the common ratio which is 3 according to the question
n is the number of terms which is 8
S is the sum of the number of terms which is 3280 according to the question
Plugging these values, we have
3280 = a(3^8 -1)/(3-1)
3280 = a( 6561-1)/2
3280 = a(6560)/2
3280 = 3280a
a = 3280/3280
a = 1
Answer:
la respuesta es 38560
Step-by-step explanation: