The average current density in the wire is given by:

where I is the current intensity and A is the cross-sectional area of the wire.
The cross-sectional area of the wire is given by:

where r is the radius of the wire. In this problem,
, so the cross-sectional area is

and the average current density is

Answer:
Bnet=1.006*10^-6T
Explanation:
One long wire lies along an x axis and carries a current of 43 A in the positive x direction. A second long wire is perpendicular to the xy plane, passes through the point (0, 5.9 m, 0), and carries a current of 41 A in the positive z direction. What is the magnitude of the resulting magnetic field at the point (0, 1.7 m, 0)?
the magnetic field Bnet=
the magnetic field due this long wire is given by
B1=∨I1/
..............................1
B2=∨I2/
............................2
Bnet=
.......................3
Bnet=v/2*pi
Bnet=4*pi*10^-7/(2
)
Bnet=0.0000002*(641.72)^.5
Bnet=1.006*10^-6T
Answer:
The answer is A All the components are made of cells.
Explanation:
The displacement of a moving object is the straight-line distance between the place it starts from and the place where it stops.
The displacement of anything moving along a circular track depends on how far around it goes before it stops. The greatest displacement it can possibly have is the diameter of the track ... 100m on this particular one ... because that's as far apart as two places on a circle can ever be.
The most interesting case is when the object goes around the circle exactly once. Then it stops at the same place it started from, the distance between the starting point and ending point is zero, and after all that motion, the displacement is zero.