Answer:
The ethanol has 21 vibrational modes.
Explanation:
A molecule can show 3 types of motions: one external called translational and two internal called rotational and vibrational.
In order to calculate the vibrational modes of a molecule we need to know the degrees of freedom of this molecule, it means the number of variables that are involved in the movement of this particle.
If we know that atoms are three dimensional we will know that they have 3 coordinates expressed as 3N. But the atoms are bonded together so they can move not only in translational but also rotational and vibrational. So, the rotational move can be described in 3 axes and the other vibrational move can be described as
3N-5 for linear molecules
3N-6 For nonlinear molecules like ethanol
So using the formula for nonlinear molecules where N is the amount of atoms in the chemical formula, so ethanol has 9 atoms
3(9)-6= 21
Thus, ethanol has 21 vibrational modes.
<span>A ) AB is a compound . Ionic compound because the electronegativity differs a lot in both !
</span><span>
B) Same
C ) Compound . But the bond between them is covalent .
D ) AB is an ionic compound . A is the cation and B is the anion </span>
Explanation:
Start with a balanced equation.
2H2 + O2 → 2H2O
Assuming that H2 is in excess, multiply the given moles H2O by the mole ratio between O2 and H2O in the balanced equation so that moles H2O cancel.
5 mol H2O × (1 mol O2/2 mol H2O) = 2.5 mol O2
Answer: 2.5 mol O2 are needed to make 5 mol H2O, assuming H2 is in excess.