Answer:
-372000 J or -372 KJ
Explanation:
We have the electrochemical reaction as;
Mg(s) + Fe^2+(aq)→ Mg^2+(aq) + Fe(s)
We must first calculate the E∘cell from;
E∘cathode - E∘anode
E∘cathode = -0.44 V
E∘anode = -2.37 V
Hence;
E∘cell = -0.44 V -(-2.37 V)
E∘cell = 1.93 V
n= 2 since two electrons were transferred
F=96,500C/(mol e−)
ΔG∘=−nFE∘
ΔG∘= -( 2 * 96,500 * 1.93)
ΔG∘= -372000 J or -372 KJ
Correct Answer: Option C i.e <span>Solution
Reason:
Solutions are characterized by particles of size less than 1nm. Since the particle size in solutions are very small, they cannot be separated by centrifugation. On other hand, colloids have particle size ranging from 1nm to 100 nm, while suspensions have particle size > 100 nm. Hence, they can be separated by centrifugation. </span>
C i think because new info can be found to make a new idea
Answer and Explanation:
Natural selection can benefit a species in many ways. One way natural selection benefits a species is by helping a species adapt to constant changing environments and biomes. natural selection can also benefit a species by dying of the weaker links of a species and adapting the mutated species
Answer:
B) ) –1615.1 kJ mol^–1
Explanation:
since
SiO2(s) + 4 HF(aq) → SiF4(g) + 2 H2O(l) ∆Hºrxn = 4.6 kJ mol–1
the enhalpy of reaction will be
∆Hºrxn = ∑νp*∆Hºfp - ∑νr*∆Hºfr
where ∆Hºrxn= enthalpy of reaction , ∆Hºfp= standard enthalpy of formation of products , ∆Hºfr = standard enthalpy of formation of reactants , νp=stoichiometric coffficient of products, νr=stoichiometric coffficient of reactants
therefore
∆Hºrxn = ∑νp*∆Hºfp - ∑νr*∆Hºfr
4.6 kJ/mol = [1*∆HºfX + 2*(–285.8 kJ/mol)] - [1*(–910.9kJ/mol) + 4*(–320.1 kJ/mol)]
4.6 kJ/mol =∆HºfX -571.6 kJ/mol + 2191.3 kJ/mol
∆HºfX = 4.6 kJ/mol + 571.6 kJ/mol - 2191.3 kJ/mol = -1615.1 kJ/mol
therefore ∆HºfX (unknown standard enthalpy of formation = standard enthalpy of formation of SiF4(g) ) = -1615.1 kJ/mol